NEW PROOFS OF TWO MATRIX INEQUALITIES

Mohamed Salah El-Sayed, Ivan Gantchev Ivanov, Milko Georgiev Petkov

Consider the following matrix inequalities if $A>B>0$ then $A^{-1}<B^{-1}$ and $\sqrt{A}>\sqrt{B}(\sqrt{B}>0)$, where the matrix inequality $X>Y$ means that the matrix $X-Y$ is positive definite. Some new proofs of these inequalities are proposed.

Introduction.

In this paper some new simple proofs for two matrix inequalities are given. Bellow we use the following notations.
$\mathcal{R}^{n}\left(\mathcal{C}^{n}\right)$ - the set of all real (complex) vectors with n components.
$\mathcal{C}^{m \times n}$ - the set of all $m \times n$ matrices.
$X>Y(X \geq Y)$ means that the matrix $X-Y$ is positive definite (semidefinite).
The two matrix inequalities which we want to prove, we will formulate by the next two theorems.

Theorem 1. If $A>B>0$ then

$$
A^{-1}<B^{-1}
$$

Theorem 2. If $A>B>0$ then

$$
\sqrt{A}>\sqrt{B}
$$

where $\sqrt{B}>0$.
An idea for proving the theorem 1 can be found in [1, p. 125], in the real case. This proof uses the next lemma.

Lemma 1. If $A>0, A \in \mathcal{R}^{n \times n}, y$ is any nonzero vector from \mathcal{R}^{n} then

$$
\left.-\left(A^{-1} y, y\right)=\min _{x \in R_{x \neq 0}^{n}}[(A x, x)]-2(x, y)\right]
$$

Another proof of the same theorem [2, p. 85] uses the next lemma
Lemma 2. If A, B are $n \times n$ Hermitian matrices and $B>0$ then there exists nonsingular matrix T, such that

$$
\begin{aligned}
T^{*} A T & =I \\
T^{*} B T & =I
\end{aligned}
$$

where D is a diagonal matrix.
In next section 2 we will continue with some new proofs of the theorem 1 and in section 3 we will give the new proof of the theorem 2.

Proofs of the Theorem 1.
First Proof. From the condition $A>B>0$ of theorem 1 we obtain

$$
\begin{gathered}
\sqrt{B^{-1}} A \sqrt{B^{-1}}>I \\
\sqrt{B} A^{-1} \sqrt{B}<I \\
A^{-1}<B^{-1}
\end{gathered}
$$

Second Proof. We put $A=B+C$ and obtain $C=A-B>0$. We have

$$
\begin{aligned}
B & =A-C \\
\sqrt{A^{-1}} B \sqrt{A^{-1}} & =I-\sqrt{A^{-1}} C \sqrt{A^{-1}} \\
\sqrt{A} B^{-1} \sqrt{A} & =\left(I-\sqrt{A^{-1}} C \sqrt{A^{-1}}\right)^{-1}
\end{aligned}
$$

From $I-\sqrt{A^{-1}} C \sqrt{A^{-1}}>0$ it follows that all eigenvalues of the matrix $\sqrt{A^{-1}} C \sqrt{A^{-1}}$ belong of the interval $(0,1)$. That is because of

$$
\begin{aligned}
\sqrt{A} B^{-1} \sqrt{A} & =I+\sqrt{A^{-1}} C \sqrt{A^{-1}}+\left(\sqrt{A^{-1}} C \sqrt{A^{-1}}\right)^{2}+\ldots>I \\
\sqrt{A} B^{-1} \sqrt{A} & >I \\
B^{-1} & >A^{-1}
\end{aligned}
$$

Third Proof. The proof is based on the following
Lemma 3. Let $A \in \mathcal{C}^{n \times n}, U, V^{T} \in \mathcal{C}^{n \times m}(n \geq m)$. If the matrices A and $I+V A^{-1} U$ are nonsingular then the matrix $A+U V$ is nonsingular and

$$
\begin{equation*}
(A+U V)^{-1}=A^{-1}-A^{-1} U\left(I+V A^{-1} U\right)^{-1} V A^{-1} \tag{1}
\end{equation*}
$$

The above formula is called Sherman - Morrison - Woodbury formula.
We are ready to consider the third proof. From $A=B+C$ we receive $A=B+\sqrt{C} \sqrt{C}$. According to (1) we have

$$
\begin{gathered}
A^{-1}=B^{-1}-B^{-1} \sqrt{C}\left(I+\sqrt{C} B^{-1} \sqrt{C}\right)^{-1} \sqrt{C} B^{-1}<B^{-1} \\
A^{-1}<B^{-1}
\end{gathered}
$$

Fourth Proof. We begin with two statements
Lemma 4. ([4, p.113]) If $A, B>0$ are $n \times n$ matrices, all the eigenvalues of the $A B$ are positive.

Lemma 5. If A, B, C are $n \times n$ positive definite matrices and the matrix equation

$$
\begin{equation*}
A X B=C \tag{2}
\end{equation*}
$$

has the Hermitian solution X, then $X>0$.
Proof. Let X be a positive definite solution of (2). Then

$$
\begin{equation*}
X=P C Q \tag{3}
\end{equation*}
$$

where $P=A^{-1}>0, Q=B^{-1}>0$. From (3) it follows

$$
\sqrt{C} X \sqrt{C}=(\sqrt{C} P \sqrt{C})(\sqrt{C} Q \sqrt{C}) .
$$

From last equality, $(\sqrt{C} X \sqrt{C})^{*}=\sqrt{C} X \sqrt{C}$ and $\sqrt{C} P \sqrt{C}>0, \sqrt{C} Q \sqrt{C}>0$ we get $\sqrt{C} X \sqrt{C}>0$. Hence $X>0$.

If A, B are given in theorem 1 then from equality

$$
A\left(B^{-1}-A^{-1}\right) B=A-B
$$

and Lemma 5 it follows $B^{-1}>A^{-1}$.
Fifth Proof. Since the matrix A, B can be complex we will formulate and use the complex modification of the Lemma 1.

Lemma 6. If $A, \in \mathcal{C}^{n \times n}, A>0$ and y is fixed nonzero vector from \mathcal{C}^{n} then

$$
\begin{equation*}
-\left(A^{-1} y, y\right)=\min _{x \in \mathcal{C}_{x \neq 0}}[(A x, x)-(x, y)-(y, x)] \tag{4}
\end{equation*}
$$

Proof. In order to prove the equality (4) we will show that the inequality

$$
\begin{equation*}
-\left(A^{-1} y, y\right) \geq(A x, x)-(x, y)-(y, x) \tag{5}
\end{equation*}
$$

is fulfilled. The inequality (5) is equality only for $\tilde{x}=A^{-1} y$. Really by puting $x=A^{-1} z$ the inequality (5) receives the form

$$
\left(A^{-1}(y-z), y-z\right) \geq 0
$$

which is obviously fulfilled and $\left(A^{-1}(y-z), y-z\right)=0$ only for $z=y$, i.e. $x=A^{-1} y$.
Assume A, B are matrices from theorem 1 and $y \in \mathcal{C}^{n}$ is any nonzero vector. Then if nonzero vectors x_{1} and x_{2} are such ,that

$$
\begin{aligned}
& -\left(A^{-1} y, y\right)=\min _{x \in \mathcal{C}_{x \neq 0}^{n}}[(A x, x)-(x, y)-(y, x)]=\left(A x_{1}, x_{1}\right)-\left(x_{1}, y\right)-\left(y, x_{1}\right) \\
& -\left(B^{-1} y, y\right)=\min _{x \in \mathcal{C}_{x \neq 0}^{X}}[(B x, x)-(x, y)-(y, x)]=\left(B x_{2}, x_{2}\right)-\left(x_{2}, y\right)-\left(y, x_{2}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
-\left(B^{-1} y, y\right) & =\left(B x_{2}, x_{2}\right)-\left(x_{2}, y\right)-\left(y, x_{2}\right) \\
& <\left(B x_{1}, x_{1}\right)-\left(x_{1}, y\right)-\left(y, x_{1}\right) \\
& <\left(A x_{1}, x_{1}\right)-\left(x_{1}, y\right)-\left(y, x_{1}\right)=-\left(A^{-1} y, y\right)
\end{aligned}
$$

Consequently $\left(B^{-1} y, y\right)>\left(A^{-1} y, y\right)$ or $B^{-1}>A^{-1}$.

A Proof of the Theorem 2.

The proof of the theorem 2 we will obtain as use a consequence of the Lyapunoff's theorem.

Theorem 3. If eigenvalues of the $n \times n$ matrix A have positive real parts and the $n \times n$ matrix $C>0$ then the matrix equation

$$
A X+X A^{*}=C
$$

has positive definite solution.
Corollary. If $n \times n$ matrices A, B, C are positive definite and the equation

$$
\begin{equation*}
A X+X A^{*}=C \tag{6}
\end{equation*}
$$

has Hermitian solution X then $X>0$.
Really, if $X=X^{*}$ is a solution of (6) then we have

$$
\begin{equation*}
B X+X A=C \tag{7}
\end{equation*}
$$

From (6) and (7) we get

$$
(A+B) X+X(A+B)=2 C
$$

From the above equality and theorem 3 we obtain $X>0$.
Assume, that A, B are the matrices of the Theorem 2. Then from the above corollary and

$$
\sqrt{A}(\sqrt{A}-\sqrt{B})+(\sqrt{A}-\sqrt{B}) \sqrt{B}=A-B
$$

we obtain $\sqrt{A}>\sqrt{B}$.
Remark 1. Everywhere above the matrix roots are positive definite.
Remark 2. If the assimptions in theorem 1 and 2 are replaced with $A \geq B>0$, it follows $A^{-1} \leq B^{-1}$ and $\sqrt{A} \geq \sqrt{B}$.

Remark 3. The theorems 1 and 2 can be obtained as consequence, of the more generalized theorems [3,5].

REFERENCES

[1] E. F. Beckenbach, R. Bellman Inequalities, Berlin, Springer Verlag, 1961. (in Russian).
[2] R. Bellman, Introduction to Matrix Theory, New York, 1960. (in Russian).
[3] A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications, New York, Academic Press, 1979. (in Russian)
[4] D. Faddeev, V. Faddeeva, Numerical Methods of Linear Algebra, Moscow, 1963. (in Russian).
[5] T. Furuta, Characterizations of Chaotic Order via Generalized Futura Inequality, Journal of Inequal. and Appl., 1, 1997, pp.11-24.

Faculty of Mathematics and Informatics
Shoumen University
Shoumen 9712, Bulgaria
email: i.gantchev@fmi.shu-bg.net

НОВИ ДОКАЗАТЕЛСТВА НА ДВЕ МАТРИЧНИ НЕРАВЕНСТВА

Мохамед Салах Ел-Саид, Иван Ганчев Иванов, Милко Георгиев Петков

В работата се разглеждат матричните неравенства: ако $A>B>0$ то $A^{-1}<B^{-1}$ и $\sqrt{A}>\sqrt{B}(\sqrt{B}>0)$, където матричното неравенство $X>Y$ означава, че матрицата $X-Y$ е положително определена. Предложени са нови и кратки доказателства за тези неравенства.

