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Consider the following matrix inequalities if A > B > 0 then A™' < B~! and
\/Z > \/E (\/E > 0), where the matrix inequality X > Y means that the matrix
X —Y is positive definite. Some new proofs of these inequalities are proposed.

Introduction.

In this paper some new simple proofs for two matrix inequalities are given. Bellow
we use the following notations.

R™ (C™) — the set of all real (complex) vectors with n components.
C™m*™ — the set of all m x n matrices.

X >Y (X >Y) means that the matrix X — Y is positive definite (semidefinite).

The two matrix inequalities which we want to prove, we will formulate by the next
two theorems.

Theorem 1. If A > B >0 then
Al < B

Theorem 2. If A > B > 0 then

VA > /B,
where VB > 0.

An idea for proving the theorem 1 can be found in [1, p. 125], in the real case. This
proof uses the next lemma.

Lemma 1.If A > 0, A € R" ",y is any nonzero vector from R™ then

—(A7ly,y) = min [(Az, )] - 2(x,y)]

xERZ?ﬁO

Another proof of the same theorem [2, p. 85] uses the next lemma

Lemma 2. If A, B are n x n Hermitian matrices and B > 0 then there exists non-
singular matrix T, such that

T*AT = I
T*BT = I,
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where D is a diagonal matriz.

In next section 2 we will continue with some new proofs of the theorem 1 and in
section 3 we will give the new proof of the theorem 2.

Proofs of the Theorem 1.

First Proof. From the condition A > B > 0 of theorem 1 we obtain

VB-TAVB-1> 1
VBAT'"WB < I
Al < B
Second Proof. We put A = B + C and obtain C = A — B > 0. We have
B = A-C
VA-IBYVA-1 = [-VA-1CVAT
VABWA = (1-VATovAT)

From I —vVA-1CvVA~1 > 0 it follows that all eigenvalues of the matrix v A=1CvVA~!
belong of the interval (0,1). That is because of

VAB™"™WA = T+VA1CVAT + (\/A—lcm—l)2 +..>1T

VAB™'WA > 1
B! > AL
Third Proof. The proof is based on the following

Lemma 3. Let A € C*", U, VT € C"™(n > m). If the matrices A and I +V A~'U
are nonsingular then the matriz A+ UV is nonsingular and

(1) (A+UV)yt=At-AlUg+vatu)ytvatt

The above formula is called Sherman — Morrison — Woodbury formula.
We are ready to consider the third proof. From A = B+C we receive A = B+v/CV/C.
According to (1) we have

Al =B ' - B WCI+VCB WC)"WCB ' < B!
Al < Bt

Fourth Proof. We begin with two statements

Lemma 4. ([4, p.113]) If A, B > 0 are n X n matrices, all the eigenvalues of the AB
are positive.

Lemma 5. If A, B,C are n X n positive definite matrices and the matriz equation
(2) AXB=C
has the Hermitian solution X, then X > 0.

Proof. Let X be a positive definite solution of (2). Then
3) X = PCQ,
where P = A=1 >0, Q = B~! > 0. From (3) it follows
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VCXVC = (VCPVC) (VCQVO).

From last equality, (\/5X\/5)* =/CX/C and VCPVC > 0, VCQVC > 0 we get
VCX+/C > 0. Hence X > 0.
If A, B are given in theorem 1 then from equality
AB'-AYHYB=A-B
and Lemma 5 it follows B~! > A~
Fifth Proof. Since the matrix A, B can be complex we will formulate and use the

complex modification of the Lemma 1.
Lemma 6. If A,€ C"*", A > 0 and y is fixed nonzero vector from C” then

Proof. In order to prove the equality (4) we will show that the inequality

(5) —(A7Yyy) > (Az,2) = (2,9) — (y,2)
is fulfilled. The inequality (5) is equality only for # = A~!y. Really by puting z = A=12
the inequality (5) receives the form
(A7 y —2),y—2) 20
which is obviously fulfilled and (A~!(y — 2),y — 2) = 0 only for z =y, i.e. x = A" ly.
Assume A, B are matrices from theorem 1 and y € C™ is any nonzero vector. Then if
nonzero vectors x1 and x5 are such ,that

7(A71y7y) = a:énCl’g [(Al‘,l‘) - (xay) - (y,z)] - (Al‘l,l'l) - (mlay) - (y,l'l)

_(B_1y7y) = a,énclwn [(Bx7x) - (.ﬁ,y) - (y,ac)] = (B.ﬁg,xg) - ($2,y) - (y,$2)
x#0
then
_(Bilyay) = (Bx27x2) - (ch,y) - (yaIQ)
< (Bwi,r1) — (21,9) — (y,71)
< (Al'l,l'l) - (ﬂfl,y) - (yaxl) = 7(A_1yay)
Consequently (B~ ty,y) > (A ty,y) or B~t > A~1L.
A Proof of the Theorem 2.
The proof of the theorem 2 we will obtain as use a consequence of the Lyapunoff’s
theorem.
Theorem 3. If eigenvalues of the n X n matriz A have positive real parts and the
n X n matriz C > 0 then the matriz equation
AX + XA*=C
has positive definite solution.

Corollary. If n x n matrices A, B,C are positive definite and the equation
(6) AX + XA*=C
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has Hermitian solution X then X > 0.
Really, if X = X* is a solution of (6) then we have
(7) BX+XA=C
From (6) and (7) we get
(A+ B) X + X(A+ B) =2C.
From the above equality and theorem 3 we obtain X > 0.

Assume, that A, B are the matrices of the Theorem 2. Then from the above corollary
and

VAWA-VB)+(VA-VB)WB=A-B,
we obtain vA > v/B.
Remark 1. Everywhere above the matrix roots are positive definite.
Remark 2. If the assimptions in theorem 1 and 2 are replaced with A > B > 0, it
follows A= < B! and VA > VB.
Remark 3. The theorems 1 and 2 can be obtained as consequence, of the more
generalized theorems [3,5].
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HOBU JOKA3ATEJICTBA HA IBE MATPVYHU HEPABEHCTBA
Moxamen Canax En-Caun, UBan 'anyeB IBanoB, Muiko I'eoprues Ilerkos
B paBorara ce pasriexkaaT MaTpHIHATE HepaBeHCTBa: ako A > B > 0 1o A~ '<B™?
uvA > VB (\/E > 0), KbJIETO MATPUIHOTO HEpaBeHCTBO X > Y o3HavaBa, e

MaTpunaTa X — Y e nosioxkutesiHO olnpejeJseHa. Hpe;(nomeHH Ca HOBU U KpaTKH J10-
Ka3aTeJICTBa 3a T€3U HEpaBEHCTBa.
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