МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2000 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2000 Proceedings of Twenty Ninth Spring Conference of the Union of Bulgarian Mathematicians Lovetch, April 3–6, 2000

NEW PROOFS OF TWO MATRIX INEQUALITIES

Mohamed Salah El-Sayed, Ivan Gantchev Ivanov, Milko Georgiev Petkov

Consider the following matrix inequalities if A > B > 0 then $A^{-1} < B^{-1}$ and $\sqrt{A} > \sqrt{B}$ ($\sqrt{B} > 0$), where the matrix inequality X > Y means that the matrix X - Y is positive definite. Some new proofs of these inequalities are proposed.

Introduction.

In this paper some new simple proofs for two matrix inequalities are given. Bellow we use the following notations.

 \mathcal{R}^n (\mathcal{C}^n) – the set of all real (complex) vectors with *n* components.

 $\mathcal{C}^{m \times n}$ – the set of all $m \times n$ matrices.

X > Y ($X \ge Y$) means that the matrix X - Y is positive definite (semidefinite). The two matrix inequalities which we want to prove, we will formulate by the next two theorems.

Theorem 1. If A > B > 0 then

 $A^{-1} < B^{-1}$.

Theorem 2. If A > B > 0 then

$$\sqrt{A} > \sqrt{B}$$

where $\sqrt{B} > 0$.

An idea for proving the theorem 1 can be found in [1, p. 125], in the real case. This proof uses the next lemma.

Lemma 1. If $A > 0, A \in \mathbb{R}^{n \times n}$, y is any nonzero vector from \mathbb{R}^n then

$$-(A^{-1}y,y) = \min_{x \in R_{x \neq 0}^n} [(Ax,x)] - 2(x,y)]$$

Another proof of the same theorem [2, p. 85] uses the next lemma

Lemma 2. If A, B are $n \times n$ Hermitian matrices and B > 0 then there exists nonsingular matrix T, such that

$$T^*AT = I$$
$$T^*BT = I,$$
161

where D is a diagonal matrix.

In next section 2 we will continue with some new proofs of the theorem 1 and in section 3 we will give the new proof of the theorem 2.

Proofs of the Theorem 1.

First Proof. From the condition A > B > 0 of theorem 1 we obtain

$$\sqrt{B^{-1}} A \sqrt{B^{-1}} > I$$

$$\sqrt{B} A^{-1} \sqrt{B} < I$$

$$A^{-1} < B^{-1}.$$

Second Proof. We put A = B + C and obtain C = A - B > 0. We have

$$B = A - C$$

 $\sqrt{A^{-1}B}\sqrt{A^{-1}} = I - \sqrt{A^{-1}C}\sqrt{A^{-1}}$
 $\sqrt{AB^{-1}}\sqrt{A} = (I - \sqrt{A^{-1}C}\sqrt{A^{-1}})^{-1}$

From $I - \sqrt{A^{-1}}C\sqrt{A^{-1}} > 0$ it follows that all eigenvalues of the matrix $\sqrt{A^{-1}}C\sqrt{A^{-1}}$ belong of the interval (0, 1). That is because of

$$\sqrt{A}B^{-1}\sqrt{A} = I + \sqrt{A^{-1}}C\sqrt{A^{-1}} + \left(\sqrt{A^{-1}}C\sqrt{A^{-1}}\right)^2 + \dots > I
\sqrt{A}B^{-1}\sqrt{A} > I
B^{-1} > A^{-1}.$$

Third Proof. The proof is based on the following

Lemma 3. Let $A \in C^{n \times n}, U, V^T \in C^{n \times m} (n \ge m)$. If the matrices A and $I + VA^{-1}U$ are nonsingular then the matrix A + UV is nonsingular and (1) $(A + UV)^{-1} = A^{-1} - A^{-1}U(I + VA^{-1}U)^{-1}VA^{-1}$

The above formula is called Sherman – Morrison – Woodbury formula.

We are ready to consider the third proof. From A = B + C we receive $A = B + \sqrt{C}\sqrt{C}$. According to (1) we have

$$A^{-1} = B^{-1} - B^{-1}\sqrt{C}(I + \sqrt{C}B^{-1}\sqrt{C})^{-1}\sqrt{C}B^{-1} < B^{-1}$$
$$A^{-1} < B^{-1}.$$

Fourth Proof. We begin with two statements

Lemma 4. ([4, p.113]) If A, B > 0 are $n \times n$ matrices, all the eigenvalues of the AB are positive.

Lemma 5. If A, B, C are $n \times n$ positive definite matrices and the matrix equation (2) AXB = C

has the Hermitian solution X, then X > 0.

Proof. Let X be a positive definite solution of (2). Then

(3) X = PCQ, where $P = A^{-1} > 0$, $Q = B^{-1} > 0$. From (3) it follows 162

$$\sqrt{C}X\sqrt{C} = (\sqrt{C}P\sqrt{C}) \ (\sqrt{C}Q\sqrt{C}).$$

From last equality, $(\sqrt{C}X\sqrt{C})^* = \sqrt{C}X\sqrt{C}$ and $\sqrt{C}P\sqrt{C} > 0$, $\sqrt{C}Q\sqrt{C} > 0$ we get $\sqrt{C}X\sqrt{C} > 0$. Hence X > 0.

If A, B are given in theorem 1 then from equality

$$A(B^{-1} - A^{-1})B = A - B$$

and Lemma 5 it follows $B^{-1} > A^{-1}$.

Fifth Proof. Since the matrix A, B can be complex we will formulate and use the complex modification of the Lemma 1.

Lemma 6. If $A \in \mathcal{C}^{n \times n}$, A > 0 and y is fixed nonzero vector from \mathcal{C}^n then

(4)
$$-(A^{-1}y,y) = \min_{x \in \mathcal{C}_{x\neq 0}^{n}} \left[(Ax,x) - (x,y) - (y,x) \right]$$

Proof. In order to prove the equality (4) we will show that the inequality

(5)
$$-(A^{-1}y,y) \ge (Ax,x) - (x,y) - (y,x)$$

is fulfilled. The inequality (5) is equality only for $\tilde{x} = A^{-1}y$. Really by puting $x = A^{-1}z$ the inequality (5) receives the form

$$(A^{-1}(y-z), y-z) \ge 0$$

which is obviously fulfilled and $(A^{-1}(y-z), y-z) = 0$ only for z = y, i.e. $x = A^{-1}y$.

Assume A, B are matrices from theorem 1 and $y \in C^n$ is any nonzero vector. Then if nonzero vectors x_1 and x_2 are such that

$$-(A^{-1}y,y) = \min_{x \in \mathcal{C}_{x\neq 0}^n} \left[(Ax,x) - (x,y) - (y,x) \right] = (Ax_1,x_1) - (x_1,y) - (y,x_1)$$
$$-(B^{-1}y,y) = \min_{x \in \mathcal{C}_{x\neq 0}^n} \left[(Bx,x) - (x,y) - (y,x) \right] = (Bx_2,x_2) - (x_2,y) - (y,x_2)$$

then

$$\begin{array}{ll} -(B^{-1}y,y) &=& (Bx_2,x_2) - (x_2,y) - (y,x_2) \\ &<& (Bx_1,x_1) - (x_1,y) - (y,x_1) \\ &<& (Ax_1,x_1) - (x_1,y) - (y,x_1) = -(A^{-1}y,y) \end{array}$$

Consequently $(B^{-1}y, y) > (A^{-1}y, y)$ or $B^{-1} > A^{-1}$. A Proof of the Theorem 2.

The proof of the theorem 2 we will obtain as use a consequence of the Lyapunoff's theorem.

Theorem 3. If eigenvalues of the $n \times n$ matrix A have positive real parts and the $n \times n$ matrix C > 0 then the matrix equation

$$AX + XA^* = C$$

has positive definite solution.

Corollary. If $n \times n$ matrices A, B, C are positive definite and the equation (6) $AX + XA^* = C$

163

has Hermitian solution X then X > 0.

Really, if $X = X^*$ is a solution of (6) then we have

BX + XA = C

From (6) and (7) we get

(7)

$$(A+B)X + X(A+B) = 2C.$$

From the above equality and theorem 3 we obtain X > 0.

Assume, that A, B are the matrices of the Theorem 2. Then from the above corollary and

$$\sqrt{A}(\sqrt{A} - \sqrt{B}) + (\sqrt{A} - \sqrt{B})\sqrt{B} = A - B,$$

we obtain $\sqrt{A} > \sqrt{B}$.

Remark 1. Everywhere above the matrix roots are positive definite.

Remark 2. If the assimptions in theorem 1 and 2 are replaced with $A \ge B > 0$, it follows $A^{-1} \le B^{-1}$ and $\sqrt{A} \ge \sqrt{B}$.

Remark 3. The theorems 1 and 2 can be obtained as consequence, of the more generalized theorems [3,5].

REFERENCES

E. F. BECKENBACH, R. BELLMAN Inequalities, Berlin, Springer Verlag, 1961. (in Russian).
 R. BELLMAN, Introduction to Matrix Theory, New York, 1960. (in Russian).

[3] A. W. MARSHALL, I. OLKIN, Inequalities: Theory of Majorization and Its Applications, New York, Academic Press, 1979. (in Russian)

[4] D. FADDEEV, V. FADDEEVA, Numerical Methods of Linear Algebra, Moscow, 1963. (in Russian).

[5] T. FURUTA, Characterizations of Chaotic Order via Generalized Futura Inequality, *Journal of Inequal. and Appl.*, 1, 1997, pp.11-24.

Faculty of Mathematics and Informatics Shoumen University Shoumen 9712, Bulgaria email: i.gantchev@fmi.shu-bg.net

НОВИ ДОКАЗАТЕЛСТВА НА ДВЕ МАТРИЧНИ НЕРАВЕНСТВА

Мохамед Салах Ел-Саид, Иван Ганчев Иванов, Милко Георгиев Петков

В работата се разглеждат матричните неравенства: ако A > B > 0 то $A^{-1} < B^{-1}$ и $\sqrt{A} > \sqrt{B}$ ($\sqrt{B} > 0$), където матричното неравенство X > Y означава, че матрицата X - Y е положително определена. Предложени са нови и кратки доказателства за тези неравенства.