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In the present paper we study some statistical parameter spaces which have a special
role in the information geometry. Both analytical and geometrical representations
of each of them are found out. The rotational surfaces of constant negative Gauss
curvature are also considered and parametrically represented. We prove that the
pseudo-sphere is actually a particular case of all of those surfaces. The pseuso-sphere
is used for characterizing the statistical parameter spaces constituted by the normal,
the exponential and the logistic density functions. A comparative representation of
these three parameter spaces is given as well.

1. Introduction. The information geometry is mainly based on the study of the
statistical parameter spaces. These spaces are sets of parameters which are characterized
by some probability density functions, i.e. they are not supposed to have geometrical
structure. However, as C. R. Rao proved in [1], the Fisher’s information matrix satisfies
all the properties of a Riemannian metric. Thus the statistical parameter spaces can
be treated as Riemannian spaces. This fact acquires the special significance of the Rie-
mannian geometry for the development of the information geometry. The Riemannian
approach to the study of the statistical parameter spaces has been intensively used re-
cently by many authors. Most of the important Riemannian characteristics of the main
statistical parameter spaces have been already studied ([2]–[3]). However, there are still
many open problems in the information geometry mostly concerning both the interpre-
tation of some of these characteristics and the representation of the statistical parameter
spaces. We considered some of those problems in our previous research ([4], [5]) and
found their solutions.

In the present paper we continue our study of the statistical parameter spaces and
characterize some of them. We consider the statistical parameter spaces constituted by
three main probability density functions: the normal, the exponential and the logisitc
one. All of them are spaces of constant negative Gauss curvature and have a special role
in the information geometry. We also study the rotational surfaces of constant negative
Gauss curvature G and apply them to obtain a representation of the statistical parameter
spaces mentioned above. In section 2 we find a general analytical representation of all the
surfaces of constant negative Gauss curvature. We prove that the pseudo-sphere which
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is the only well-known example of a rotational surface of constant negative Gauss curva-
ture is actually a particular case of all the surfaces of G < 0 given by our parametrical
representation. Using these results, in Section 3 we characterize the statistical parameter
spaces of the normal, the exponential and the logistic probability density functions by
finding both analytical and geometric representations for each of them. Moreover, we
give a comparative geometrical representation of those three statistical parameter spaces
all together.

2. Rotational surfaces of constant negative Gauss curvature . Let f(u) and
g(u) be continuous and differentiable functions, u be a parameter, u ∈ (∞;−∞), and
l : x = f(u), z = g(u), be an arbitrary curve in the coordinate plane Oxz. The surface
S obtained by a rotation of the curve l around the coordinate axis Oz has the following
representation:

(2.1) S : x = f(u) cos v, y = f(u) sin v, z = g(u),

where the parameter v ∈ [0; 2π].

The Gauss curvature of a rotational surface is given by the formula ([6]):

(2.2) G = −f ′′

f
,

where f ′′ = f ′′(u) =
d2f(u)

du2
and f ′2 + g′2 = 1.

In case the Gauss curvature G of the surface S is a constant c the differential equation
(2.2) takes the form cf + f ′′ = 0. It is obvious that if c = 0, then we get f(u) = C1u,
where C1 is an integration constant. Independently on what kind the function g(u) is of,
we still have a surface of constant Gauss curvature G = 0. The plane is an example for
a surface of constant zero Gauss curvature.

A well-known example for a rotational surface of constant positive Gauss curvature
is the sphere. We know that the Gauss curvature of a sphere of radius R is G = 1/R2

([6]). A less known fact, however, is that there are two more kinds of surfaces of constant
positive Gauss curvature. They have been only briefly mentioned in [6], but not enough
studied there. Representations of all of these three kinds of surfaces of constant positive
Gauss curvature were found in [4] (see also [5]).

Let us now pay attention on the rotational surfaces of constant negative Gauss cur-
vature. They are very useful for illustrating of some important statistical parameter
spaces. The only well-known example for a rotational surface of constant negative Gauss
curvature is the pseudo-sphere. But besides of it there are two more kinds of rotational
surfaces of constant negative Gauss curvature which have not yet been studied. Only a
short notice of their existence can be found in [6]. They have been represented and for
the first time applied to the Information geometry in [4]. In this section we give a general
analytical expression for all these surfaces and prove that the pseudo-sphere is actually
a particular case of all the surfaces which have constant negative Gauss curvature. Next
we use these surfaces to give a representation of three important statistical parameter
spaces.

We consider the rotational surfaces which have Gauss curvature G = −c2, where c is
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an arbitrary constant. Then we get from (2.2):

(2.3) c2f − f ′′ = 0.

The solution of the differential equation (2.3) is

(2.4) f = C1 exp
−cu +C2 exp

cu,

where C1, C2 are integration constants. If C1 = C2 = 0, we get the trivial case f(u) = 0.
Further we consider all cases except it. Depending on the constants C1 and C2 we have
three kinds of rotational surfaces represented by (2.4) ([7]):

I kind. C1 = 0 or C2 = 0.

I. A). C1 6= O,C2 = 0.

The functions f(u) and g(u) in this case take the forms:

(2.5) f(u) = C1 exp
−cu, g(u) = ±1

c

∫ u

0

√

1− (−cC1 exp−ct)
2
dt.

For convenience we denote C1 = α1, c = α2 and unify c and all the integration
constants by αi, i = 1, 2, 3, 4. Integrating (2.5), we get:

g(u) = α3

[

log tan
arcsinα4e

−α2u

2
+ cos(arcsinα4e

−α2u)

]

where

(α1, α2, α3, α4) = (C1, c,∓
1

c
, C1c)

and

(2.6) α4e
−α2u ≤ 1 , 0 < α1 ≤ expcu

c
, (0 ≤ u ≤ +∞).

The functions f(u) and g(u) define a curve in the plane Oz given by

(2.7) l : x = α1exp
−α2u, z = α3

[

log tan
arcsinα4e

−α2u

2
+ cos(arcsinα4e

−α2u)

]

and the conditions (2.6) are satisfied. In case α1 = 1/c we get from (2.7) the parametric
equations of the so-called tractriss curve:

(2.8) l : x =
1

c
exp−cu, z = ∓1

c

[

log tan
arcsin e−cu

2
+ cos(arcsin e−cu)

]

.

The surface obtained by the rotation of the tractriss curve (2.8) around the axis Oz
is the pseudo-sphere. Due to (2.1) it can be represented by the following parametrical
equations:

(2.9) S :



























x =
1

c
exp−cu cos v

y =
1

c
exp−cu sin v

z = ∓1

c

[

log tan
arcsin e−cu

2
+ cos(arcsin e−cu)

]

,

where u ∈ [0; 2π] and v ∈ [0;π].

I. B). C1 = 0, C2 6= 0.
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In this case we denote C2 = α1 and after similar considerations as in the previous
case I. A) we get the expressions for both functions f(u) and g(u). They are equivalent
to (2.7) for u ∈ (−∞, 0], i.e. after the rotation of the curve l in this case we get the same
preudo-sphere as in the previous case. The conditions for the constant α1, however, are
0 ≤ α1 ≤ exp−cu /c.

Thus, we obtained that the preudo-sphere is actually a particular case of all the
rotational surfaces of constant negative Gauss curvature represented by (2.4). We can
get it from (2.4) in case one of the integration constants C1 or C2 is zero. If another
constant is equal to 1/c, then the pseudo-sphere obtained has constant 1/c.

Let us now consider the next case: neither of the integration constants C1 and C2 is
zero. The surfaces obtained in such a case so that the integral in (2.5) to be calculated
can be represented in the following two groups: {C1 = −C2} and {C1 = C2}, i.e. we
have another two kinds of rotational surfaces of constant negative Gauss curvature.

II kind. C1 = −C2.

In this case the rotational surface has the following parametrical representation:

(2.10) S :







x = β1 sinhβ2u cos v
y = β1 sinhβ2u sin v
z = iβ3E(iβ2u

∣

∣ −β4),

where E(iβ2u
∣

∣ −β4) is an extended elliptic integral of second kind and

(β1, β2, β3, β4) = (β1, c,∓
√

1

c2
− β1

2,
β2
1c

2

1− β2
1c

2
),

−1

c
arc sinh

√

1

β4

≤ u ≤ 1

c
arc sinh

√

1

β4

, 0 < β1 <
1

c
.

III kind. C1 = C2.

The surface of this kind is parametrically represented as follows:

(2.11) S :







x = γ1 cosh γ2u cos v
y = γ1 cosh γ2u sin v
z = iγ3E(iγ2u

∣

∣ −γ4),

where

(γ1, γ2, γ3, γ4) = (γ1, c,∓
1

c
, γ2

1c
2) and − 1

c
arcsinh

√

1

γ4
≤ u ≤ 1

c
arcsinh

√

1

γ4
.

Both kinds of surfaces defined by (2.10) and (2.11), respectively, are illustrated in [4] and
[5].

In the next section we use the rotational surface of I-st kind, i.e. the pseudo-sphere
for describing of some statistical parameter spaces which have a special role in the Infor-
mation geometry.

3. Representations of three main statistical parameter spaces.

3.1. Statistical parameter space constituted by the normal probability
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density function. The statistical parameter space constituted by the normal proba-
bility density function is one of the fundamental and most popular statistical parameter
spaces in Information geometry. It has been already studied ([2], [3]) and most of its
characteristics are well-known. The problem to find a geometrical representation of this
parameter space has not been solved yet. In the present section we give both a paramet-
ric and a geometrical representation of the space constituted by the normal probability
density function.

Definition 1. The probability density function in case of a 1-dimensional normal

distribution is defined in the following way:

(3.1) f(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where x is a random variable, µ is the mean value, σ is the standard deviation and σ2 is
the variance.

The statistical parameter space N constituted by the normal probability density func-
tion (3.1) is a space of constant negative Gauss curvature:

(3.2) GN = −1

2
.

Using (3.2) and (2.9) for (α1, α2, α3, α4) = (
√
2,

√
2

2
,−

√
2, 1), we can analytically

represent the space N in the following way:

(3.3) SN :























x =
√
2exp−

√

2
2 u cos v

y =
√
2exp−

√

2
2 u sin v

z = −
√
2

[

log tan
arcsin e−

√

2
2 u

2
+ cos(arcsin e−

√

2
2 u)

]

.

The rotational surface SN given by (3.3) for v ∈ [π/2;π] is represented on Fig. 1.

Fig. 1. The parameter space N. Fig. 2. The parameter space E.
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3.2. Statistical parameter space constituted by the exponential probability
density function.

Definition 2. The exponential probability density function is defined by the equation:

(3.5) f(x;µ, σ) =
1

σ
e

−(x−µ)
σ ,

where x (x > µ) is a random variable, µ is the mean value, σ is the standard deviation.

We consider the statistical parameter space constituted by the exponential probability
density function (3.5) and note it by E. The Gauss curvature of the parameter space E
is ([2])

(3.5) GE = −1,

Then having in mind (3.5) and (2.9) for (α1, α2, α3, α4) = (1, 1,−1, 1), we get the fol-
lowing analytical representation of the statistical parameter space E constituted by the
exponential probability density function:

(3.6) SE :















x = exp−u cos v
y = exp−u sin v

z = −
[

log tan
arcsin e−u

2
+ cos(arcsin e−u)

]

.

The rotational surface SE defined by (3.6) for v ∈ [π/2;π] is represented on Fig. 2.

3.3. The statistical parameter space constituted by the logisitc density
function. The logisitc function has some properties which make it very suitable for
creating mathematical models of some biological phenomena. The logisitc function has
been used also in some mathematical models of the neural network which has been
widely investigated recently. The logisitc distribution has been applied to the model
of the growth of the human beings population. It has been already used also as an
approximation of the normal distribution. In [8] we constituted a statistical parameter
space using the logisitc density function. We studied all the most important from an
information point of view Riemannian characteristics of this statistical parameter space
([4]). Now we give a representation of the parameter space L.

Definition 7. The logistic function F (x; a, b) and the logistic density function

f(x; a, b) are given by the equations:

(3.7) F (x; a, b) =
1

1 + eax− b
,

dF

dx

def
= f(x; a, b) =

−aeax− b

(1 + eax− b)
2
, a < 0,

respectively, where x is a random variable and a, b are parameters.

Let L be the statistical parameter space constituted by the logistic density function
(3.7). In [4], we studied the parameter space L and obtained its characteristics. We also
proved that the statistical parameter space constituted by the logistic density function
is a space of constant negative Gauss curvature

(3.8) GL = − 9

π2 + 3
.
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Fig. 3. The parameter space L. Fig. 4. The parameter spaces E, L and N.

The parameter space L as well as the parameter spaces N and E, can be represented
by a pseudo-sphere (Fig. 3). The constant of this pseudo-sphere is 3/

√
π2 + 3.

Let us now consider all three statistical parameter spaces represented above. Taking
into account (3.2), (3.5) and (3.8), we can notice an interesting fact. The Gauss cur-
vatures of the statistical parameter spaces N , E and L constituted by the normal, the
exponential and the logistic density functions, respectively, satisfy the following relation:

GE < GL < GN .

We represent those three parameter spaces all together on Fig. 4.
Remark. All the rotational surfaces representing the parameter spaces N,E and

L on Figures 1-4 are drown for v ∈ [π/2;π]. In case v ∈ [0;π] we get also another
part of each pseudo-sphere which is symmetrical to the represented one in respect to the
coordinate plane Oxy. We also notice that when the parameter v → 0 and v → π the
z-coordinates of the pseudo-spheres go to −∞ and +∞, respectively. We have z ∈ [0; 2]
on Figures 1, 3, 4 and z ∈ [0; 1.5] on Figure 2.
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ЕДНО ПРИЛОЖЕНИЕ НА ПСЕВДО-СФЕРАТА В ИНФОРМАЦИОННАТА

ГЕОМЕТРИЯ

Райна Борисова Иванова

В настоящата работа разглеждаме някои статистически параметрични простран-

ства, които имат специална роля в информационната геометрия. Намерени са

както аналитично, така и геометрично представяне за всяко от тях. Разгледани

са също и ротационните повърхнини с постоянна отрицателна Гаусова кривина,

за която е намерено и параметрично представяне. Намерено е едно приложение

на псевдо-сферата за характеризиране на статистическите параметрични прост-

ранства, определени от нормалната, експоненциалната и логистичната функция

на гъстота. Дадено е и сравнително представяне на посочените три параметрични

пространства.
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