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FEEDBACK CONTROL OF AN ANAEROBIC
FERMENTATION PROCESS UNDER UNCERTAIN DATA"

Mikhail Krastanov, Neli Dimitrova

A model of continuous methane fermentation process, described by a two-dimensional
control system and involving uncertainties in the coefficients is studied. We compute
the set of optimal static points according to a given criterion and propose a feedback
control stabilizing the process around this set. Numerical results are also reported.

1. Introduction. The methane fermentation is an anaerobic biotechnological
process for depollution of organic wastes, resulting in biogas production. There is a
variety of mathematical models describing this process [1], [8]-[9] since mathematical
modelling has recently becomes a powerful tool for better understanding and simulating
of fermentation processes.

We consider a simple model of methane fermentation based on two nonlinear ordinary
differential equations [1], [4], [6], and a given criterion for biogas production rate:
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where z = z(t) and s = s(t) are state variables,

T is biomass concentration,

s is substrate concentration,

U is dilution rate,

Sin is influent substrate concentration,

Umax 1S maximum specific growth rate of microorganisms,
ks is saturation constant,

k1 is yield coefficient,

ko is coefficient,

Q is methane gas flow rate.
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The control input is the dilution rate « and the output is methane gas flow rate Q = Q(u).
For biological reasons, the state variables z, s, the coefficients pmax, ks, k1 and ko as
well as u, s;, are positive; additionally, 0 < s < s, and u € U = {u]| 0 < u < pfimax} are
valid. In [6] we proposed a bounded feedback stabilizing the dynamics (1)—(2) to the so
called optimal static point, which is determined according to the criterion max, Q(u). It
is assumed in [6] that the model parameters pimax, ks, k1 and ks are exactly known.

Practical experiments and some results from parameter estimation show [8] that most
of the coeflicients in the model (1)—(3) are not exactly known but bounded. Assume now
that instead of numerical values for pimax, ks, k1 and ko we are given intervals [pmax],
[ks], [k1] and [k2]. The aim of this paper is to compute the set of all optimal static
points when the model parameters vary in the corresponding intervals and to construct
a bounded feedback control law stabilizing the uncertain control system to this set.

The paper is organized as follows. In Section 2 we describe the steady states of the
methane fermentation process involving intervals in the model coefficients. In Section 3
we construct the feedback stabilizing the uncertain control system. In the last section
we report some numerical results using the computer algebra system Maple.

2. The Set of Optimal Static Points. The steady states of the process (1)—(3)
satisfy the nonlinear system

MmaxS
4 —u=0
(4) ey
(5) P u(sin —5) = 0.

It is shown in [6] that for each w from the admissible interval U,

U — |:0, Mmaxsin) cu

ks =+ Sin
the nonlinear system (4)—(5) possesses a unique positive solution (s*(u),z*(u)), where
ks infmax T ks in
©) ) = () = St = (B S
Hmax — U kl (Nmax - U)

and for all u € U the following equality s*(u) 4+ k12*(u) = si, holds true.
By substituting s = s*(u) and x = 2*(u) in the expression for @) in (3) we obtain the
representation
k —(k in 2 max°in
Qu) = 12 o it
1 ,Ufmax —Uu
The function @Q(u) is called input-output static characteristic of the dynamics (1)—

(2). There is a unique point @ € U where Q(u) achieves a local maximum, that is

max,ecpy Q(u) = Q(4) and
L ks
1 Hmax <1 V ks+sm>'

The point (z*(a), s*(4)) is called optimal static point of (1)—(3). By substituting u = 4
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in the expressions for s*(u) and z*(u) from (6) we obtain

(7) s* =5"() = Vks(ks + sin) — ks, 2" =2"(0) = (sin — 57)/ k1.

Assume that HMmax € [:u'max] = [:u':naxaﬂ;rnax]v ks € [kS] - [k;a k:r]v ki € [kl] - [kl_a ki‘r]
and ky € [ko] = [ky , k3] are valid. Steady states analysis of the process (1)—(3) involving
the above intervals in the coefficients is presented in detail in [4]. Here we mention that
the admissible interval U becomes

0 — [o, 7”;“&"81“) cu.
ks =+ Sin

Consider further s* and z* from (7) as functions of ks, k1, defined on [ks], [k1]. Using
the monotonicity of s*(ks) we compute the range

[s1,82] = {87 (ks)| ks € [ks]},

where
s1=1/ks (ks +sim) — ki, S2= \/k;"(kzg|r + Sin) — k.
The set
®) S{(s,x>|s1§s§52, Si‘;ﬁsgssin_s}
1 1

is called optimal static set of the process (1)—(3) involving intervals in the coefficients.
This set is visualized in the plane (s,x) by the quadrangle ABCD on Figure 1. One can
easily see that the vertices A, B, C' and D have coordinates

Sin — S1 Sin — 52 Sin — 52 Sin — 81
A 51, ’ B 52, ) C 52, ) D 51, )
(1 ky ) ( ky ) ( ki ) ( ki )

Fig. 1. The optimal static set ABCD and X (0, -), Y(0, %), Z(sin, 0)
1 1
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and the boundary lines (AB) and (C'D) are presented by
(AB): s+ kj x = sin; (CD) : s+ kiz = sip.

3. Feedback Control Design. Let d > 0 and €3 be a compact neighbourhood of
the optimal static set S = ABCD consisting of all points P = (s, x) such that distg(P) <
d (here distg (P) denotes the distance between the point P and the set S. Following
[2], [7] and [10] we shall introduce some notions. A bounded function k : Q4 — U will
be called feedback. Any infinite sequence m = {¢;}52, with 0 = tg < t; < t3 < ... and
lim; , 0 t; = oo is called partition of [0, +00); the number d(mw) = sup;~q(tit1 — t;) is
its diameter. The trajectory associated to a feedback k(s,z) and any gi\;en partition 7
is defined as the solution of (1)—(2) obtained by means of the following procedure (this
procedure is borrowed from the theory of positional differential games and is studied
in detail in [5]): on every interval [t;,¢;+1] the initial state (s(t;),z(t;)) is measured,
u; = k(s(t;),z(t;)) is computed and then the constant control v = w; is applied until
time ¢;4; is achieved, when a new measurement is taken.

Definition. The feedback k : Qg — U is said to stabilize asymptotically the system
(1)—(2) to the optimal static set S, if there exist T >0, 6 > 0, a partition © with d(mw) < ¢
such that for every point (s, x) € Qq the corresponding trajectory of (1)—(2) is well defined
on [0,+00) and satisfies the following conditions:

(a) (s(t),x(t)) € Qq for every t > 0;

(b) lim¢—, oo dists(s(t),z(t)) = 0.

Denote § = (s1 + $2)/2 and

Sy = {(s,2)| kyz+5—sm >0}, Sg = {(s,2) kix+s— s, <0},
Sm = {(s,2)| by +5—8m <0 A kjw+5— s, > 0}.
Our main assumption is the following:

Assumption (A). There exist four positive reals ng, Ny, Nm and d such that the values
of the following functions

£ :u’max(]' + (ki)2)51‘ + ﬂu(ki + S)
) - ) ) € Su N Qg;
o) 6F T om0 ’
+ :u’max(]' + (ki)Q)Sx + ﬂd(ki + S)
= , ,x) € SqNQg;
i) T+ o)k (son—s) 1) ) € S
0, if s 28,
Um (s, ) = kit sa T (s,x) € SNy

- + if s <38
(ks +s)(sin—s)  (Sin—5) ’
are admissible values for the control function, i. e. these values of u belong to the compact
setU.

Proposition 1. Let the assumption (A) holds true. Then the control system (1)—(2)
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is asymptotically stabilizable to the optimal static set S by the following feedback
uy (s,x), if (s,2) € SqNQq and s > 3,

ul(s,z), if (s,z) € SqgNQq and s < 3,
k(s,z) = uy, (s,x), if (s,x) € SuNQq and s > 3,

ut(s,x), if (s,2) € SuNQq and s < 3,

Um(s,), if (s,2) € Sy N Q.

Proof. The proof is too technical to be given in full length. For that reason we
concentrate our selves on some cases which allow us to present its main features. We set
z = (S,:L')T, F(Zau) = (f(z U) g(zau))Ta where

9(zw) = (s, m,u) = {200 [z u) = fls,3,0) = R ulsi - s).

The compactness of the sets {2y and U implies the existence of some real constants x > 0,
M > 1 and L > 1 such that for all z1, 29, z € Q4 and u € U the following inequalities

k(s,2) = K, [F(zu)ll € M, [|F(21,u) = F(za,u)| < Lll21 — 2]
hold true. We choose h with

1
0<h<2L -min { N,

d
\/ 1+ ( \/ 1+ (k)2
Let m = {t;}52, with 0 = tp < 1 < t2 < ... be an arbitrary partition of [0, 4+00) with
diameter not greater than h.
Claim 1. Let zo = (s°,2°)T be an arbitrary point from the set 240.S,,. The trajectory
z(+) of (1)—(2) (corresponding to the feedback k(s, x)) is well defined on [0, c0) and there
exists a positive real T such that z(t) € S for t > T.

Proof of claim 1. We set vt = (£1,+k7)T. Tt is straightforward to check that
wE, F(z,u)) <0, 2€ Q4N Sm, ucll.
This inequality implies (cf. e. g. [3], [10]) that every trajectory of the system (1)—(2),

starting from a point of S, remains in S,,. We set z; = z(¢;),u; = k(2;),i =0,1,2,....
Let us assume that z; = (s*,2)T € Q4N S, and t € [t;,t;11]. If s° > so then

d HmaxS _ /_j/ 5 Sin — g
9 —s(t) = -k ——— o < = _k max 0.
(9) o0 = R S ket M
Let now s* < s;. According to the choice of h we have
Es(t) = Es(ti) + (Es(t) — Es(ﬁi))
—k max
= %erk : :E+77m+||F( (t), i) — F(zi,us)||
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Y]

t
T — Ll2(t) — 2z > 1 — L / | F(2(r), ) | dr
ti

> o — LM (i1 — ;) > 0 — LMh > ’77’”

The invariance of the set S, with respect to trajectories of (1)—(2), the last inequality
and (9) imply that z(t), t € [t;, t;+1], does not leave the set S,,, N Qq4. Therefore, starting
with zg € S, N Qg we obtain that z; € S, N Qy for all i = 1,2,.... Thus z(-) is defined
on [0, 00). Moreover, the last inequality and (9) imply that z(t) € S for

2 sO— g, if " > sy,
t>77 where'y{

min (1, 1)’ s1— 80, if 8O < s

Claim 2. Let zo = (s°,2°)T be an arbitrary point from the set Q4 N (S, U Sq). The
trajectory z(-) of (1)—(2) (corresponding to the feedback k(s,z)) is well defined on [0, c0)
and:
(i) there exists a positive real T such that z(t) € Q4N Sy, for t > T}
(73) 2z(t) € Qg N (S, U Sq) for every t > 0 and limy—, o, dists (2(t)) = 0.

Proof of claim 2. Without loss of generality let us assume that zq = (s%,2°)7 € Q4NS,
and z(-) = (s(-),2(-))T be the corresponding trajectory. It is straightforward to check
that for every z € 24N S, and for every u € U

(T F(z,u)) < u-(sin—s—kjz)=—u-y\/1+ (k;)2 distap (2)

—K-4/14 (k{)? - distap (2)

(here distap (z) denotes the distance between the point z and the line determened by
the points A and B).
We set 7 = (ki , —1)T. Clearly, 7 is parallel to the line segment AB. As in the proof

IN

of Claim 1 we have
d < —n/2  if s>,
>

The above estimations for (1T, £2(t)) and (1, 4 2(t)) show that the trajectory z(-) does

not leave the set {4 according to Theorem 2.4, p. 191 in [3]. The following two cases are
then possible:
(a) there exists a positive real T such that z(t) € Q4N S,, for t > T;
(b) z(t) € QaN S, for every t > 0.

Let us consider the case (b). The estimations for (7,4 2(t)) show that there exists
a positive real T such that z(t) € Qg N {(s,2z) |s1 < s < sp} forallt > T. We set
&) =s() + ky 2(-) — Sin. Then

d d _
() = (0, S2(0) <~k (s — 5 — ki @) = —RE(D)

and hence, £(t) < exp(—+t) - £(0). Since &(t) = 1/1+ (ky)? - dists (2(t)) for ¢t > T,
the last estimation shows that lim;,o dists (z(t)) = 0 and the proof of Claim 2 is
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completed.
The proof of Proposition 1 follows directly from Claim 1 and Claim 2. [
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Fig. 2. Feedback control with initial point (0.78,0.089)

4. Numerical Experiments. For our computer simulation we take the following

average values for the coefficients in the model (1)—(3), see e. g. [1], [4], [6]:

Pmax = 0.4; ks =04; ky =274; ko =175; sip=3.
We consider the above values for pmax, ks, k1 and ko as centers of the corresponding
intervals; the radii are given by 74 - @, & € {ftmax, ks, k1, ko } with 0 < r, < 1.

All computations presented below are performed by the computer algebra system
Maple V Release 3. The designed worksheet proceeds as follows. We start with some
initial values s(0), z(0) and an appropriate control according to Proposition 1. With
randomly chosen points for pimax, ks, k1, k2 from the corresponding intervals we solve
numerically the system (1)—(2) on a mesh t; = (i — 1)h, i = 1,2,...,n; thereby at any
point ¢; we pick out the appropriate feedback. After n steps we choose new random
values for the coefficients and repeat the process.

With r,, = 0.035 and r, = 0.1 for @ € {fimax, ks, k2 } Figure 2 visualizes the numerical
outputs for initial data s(0) = 0.78, z(0) = 0.089.
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OBPATHA BPB3KA 3A VIIPABJIEHUE HA E/JIVVH AHAEPOBEH
PEPMEHTAIIMOHEH ITPOLIEC B YCJIOBUA HA HEOIIPEOEJIEHOCT

Muxaunn Kpbscranos, Heau JJumurpoBa

Pasriienan e eiuH HeMpeKbCHAT MOJIENT HA METaHOBA (DEPMEHTAIHsI, OTINCAH UPe3 JIBY-
MepHa yIpaBjsieMa CHCTeMa NPH HAJW4YKe Ha HEONPEJIEIEHOCTA B KOeDHUIIMEHTHUTE.
IIpecmeTHaTo € MHOXKECTBOTO HA ONTHUMAJIHUTE CTATUYHU TOYKH IIO OTHOIIEHUE Ha
JIaJIeH TTPOU3BOJICTBEH KpuTepuii. KoncTpynpaHna e crabuimsupalna oOpaTHa Bpb3Ka.
IIpencraBenu ca u pe3yaTaTH OT YUCIEHU €CKIEPUMEHTH U3BBPIITEHN C MOMOIITA Ha
cucremara 3a KoMorbpHa ajnrebpa Maple.
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