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FEEDBACK CONTROL OF AN ANAEROBIC

FERMENTATION PROCESS UNDER UNCERTAIN DATA
*

Mikhail Krastanov, Neli Dimitrova

A model of continuous methane fermentation process, described by a two-dimensional
control system and involving uncertainties in the coefficients is studied. We compute
the set of optimal static points according to a given criterion and propose a feedback
control stabilizing the process around this set. Numerical results are also reported.

1. Introduction. The methane fermentation is an anaerobic biotechnological

process for depollution of organic wastes, resulting in biogas production. There is a

variety of mathematical models describing this process [1], [8]–[9] since mathematical

modelling has recently becomes a powerful tool for better understanding and simulating

of fermentation processes.

We consider a simple model of methane fermentation based on two nonlinear ordinary

differential equations [1], [4], [6], and a given criterion for biogas production rate:

dx

dt
=

µmaxs

ks + s
x− ux;(1)

ds

dt
= −k1

µmaxs

ks + s
x+ u(sin − s);(2)

Q = k2
µmaxs

ks + s
x,(3)

where x = x(t) and s = s(t) are state variables,

x is biomass concentration,
s is substrate concentration,
u is dilution rate,
sin is influent substrate concentration,
µmax is maximum specific growth rate of microorganisms,
ks is saturation constant,
k1 is yield coefficient,
k2 is coefficient,
Q is methane gas flow rate.
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The control input is the dilution rate u and the output is methane gas flow rateQ = Q(u).

For biological reasons, the state variables x, s, the coefficients µmax, ks, k1 and k2 as

well as u, sin are positive; additionally, 0 < s < sin and u ∈ U = {u| 0 ≤ u < µmax} are

valid. In [6] we proposed a bounded feedback stabilizing the dynamics (1)–(2) to the so

called optimal static point, which is determined according to the criterion maxu Q(u). It

is assumed in [6] that the model parameters µmax, ks, k1 and k2 are exactly known.

Practical experiments and some results from parameter estimation show [8] that most

of the coefficients in the model (1)–(3) are not exactly known but bounded. Assume now

that instead of numerical values for µmax, ks, k1 and k2 we are given intervals [µmax],

[ks], [k1] and [k2]. The aim of this paper is to compute the set of all optimal static

points when the model parameters vary in the corresponding intervals and to construct

a bounded feedback control law stabilizing the uncertain control system to this set.

The paper is organized as follows. In Section 2 we describe the steady states of the

methane fermentation process involving intervals in the model coefficients. In Section 3

we construct the feedback stabilizing the uncertain control system. In the last section

we report some numerical results using the computer algebra system Maple.

2. The Set of Optimal Static Points. The steady states of the process (1)–(3)

satisfy the nonlinear system
µmaxs

ks + s
− u = 0(4)

−k1
µmaxs

ks + s
x+ u(sin − s) = 0.(5)

It is shown in [6] that for each u from the admissible interval U ,

U =

[

0,
µmaxsin
ks + sin

)

⊂ U

the nonlinear system (4)–(5) possesses a unique positive solution (s∗(u), x∗(u)), where

s∗(u) =
ksu

µmax − u
, x∗(u) =

sinµmax − (ks + sin)u

k1(µmax − u)
(6)

and for all u ∈ U the following equality s∗(u) + k1x
∗(u) = sin holds true.

By substituting s = s∗(u) and x = x∗(u) in the expression for Q in (3) we obtain the

representation

Q(u) =
k2
k1

·
−(ks + sin)u

2 + µmaxsinu

µmax − u
.

The function Q(u) is called input-output static characteristic of the dynamics (1)–

(2). There is a unique point û ∈ U where Q(u) achieves a local maximum, that is

maxu∈U Q(u) = Q(û) and

û = µmax

(

1−

√

ks
ks + sin

)

.

The point (x∗(û), s∗(û)) is called optimal static point of (1)–(3). By substituting u = û
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in the expressions for s∗(u) and x∗(u) from (6) we obtain

s∗ = s∗(û) =
√

ks(ks + sin)− ks, x∗ = x∗(û) = (sin − s∗)/k1.(7)

Assume that µmax ∈ [µmax] = [µ−
max, µ

+
max], ks ∈ [ks] = [k−s , k

+
s ], k1 ∈ [k1] = [k−1 , k

+
1 ]

and k2 ∈ [k2] = [k−2 , k
+

2 ] are valid. Steady states analysis of the process (1)–(3) involving

the above intervals in the coefficients is presented in detail in [4]. Here we mention that

the admissible interval U becomes

Û =

[

0,
µ−
maxsin

k+s + sin

)

⊂ U .

Consider further s∗ and x∗ from (7) as functions of ks, k1, defined on [ks], [k1]. Using

the monotonicity of s∗(ks) we compute the range

[s1, s2] = {s∗(ks)| ks ∈ [ks]},

where

s1 =

√

k−s (k
−
s + sin)− k−s , s2 =

√

k+s (k
+
s + sin)− k+s .

The set

S =

{

(s, x)| s1 ≤ s ≤ s2,
sin − s

k+1
≤ x ≤

sin − s

k−1

}

(8)

is called optimal static set of the process (1)–(3) involving intervals in the coefficients.

This set is visualized in the plane (s, x) by the quadrangle ABCD on Figure 1. One can

easily see that the vertices A, B, C and D have coordinates

A

(

s1,
sin − s1

k−1

)

, B

(

s2,
sin − s2

k−1

)

, C

(

s2,
sin − s2

k+1

)

, D

(

s1,
sin − s1

k+1

)

,

Fig. 1. The optimal static set ABCD and X(0, 1

k
−

1

), Y (0, 1

k
+

1

), Z(sin, 0)
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and the boundary lines (AB) and (CD) are presented by

(AB) : s+ k−1 x = sin; (CD) : s+ k+1 x = sin.

3. Feedback Control Design. Let d > 0 and Ωd be a compact neighbourhood of

the optimal static set S = ABCD consisting of all points P = (s, x) such that distS(P ) ≤

d (here distS (P ) denotes the distance between the point P and the set S. Following

[2], [7] and [10] we shall introduce some notions. A bounded function k : Ωd → U will

be called feedback. Any infinite sequence π = {ti}
∞
i=0 with 0 = t0 < t1 < t2 < ... and

limi→∞ ti = ∞ is called partition of [0,+∞); the number d(π) = supi≥0(ti+1 − ti) is

its diameter. The trajectory associated to a feedback k(s, x) and any given partition π

is defined as the solution of (1)–(2) obtained by means of the following procedure (this

procedure is borrowed from the theory of positional differential games and is studied

in detail in [5]): on every interval [ti, ti+1] the initial state (s(ti), x(ti)) is measured,

ui = k(s(ti), x(ti)) is computed and then the constant control u ≡ ui is applied until

time ti+1 is achieved, when a new measurement is taken.

Definition.The feedback k : Ωd → U is said to stabilize asymptotically the system

(1)–(2) to the optimal static set S, if there exist T > 0, δ > 0, a partition π with d(π) ≤ δ

such that for every point (s, x) ∈ Ωd the corresponding trajectory of (1)–(2) is well defined

on [0,+∞) and satisfies the following conditions:

(a) (s(t), x(t)) ∈ Ωd for every t ≥ 0;

(b) limt→∞ distS(s(t), x(t)) = 0.

Denote s̃ = (s1 + s2)/2 and

Su = {(s, x)| k−1 x+ s− sin > 0}, Sd = {(s, x)| k+1 x+ s− sin < 0},

Sm = {(s, x)| k−1 x+ s− sin ≤ 0 ∧ k+1 x+ s− sin ≥ 0}.

Our main assumption is the following:

Assumption (A).There exist four positive reals ηd, ηu, ηm and d such that the values

of the following functions

u±
u (s, x) =

µ±
max(1 + (k±1 )2)sx± ηu(k

±
s + s)

(k∓s + s)(k−1 (sin − s) + x)
, (s, x) ∈ Su ∩ Ωd;

u±
d
(s, x) =

µ±
max(1 + (k±1 )2)sx± ηd(k

±
s + s)

(k∓s + s)(k+1 (sin − s) + x)
, (s, x) ∈ Sd ∩ Ωd;

um(s, x) =











0, if s ≥ s̃,

k+1 µ
+
maxsx

(k−s + s)(sin − s)
+

ηm
(sin − s)

, if s < s̃,
(s, x) ∈ Sm ∩ Ωd

are admissible values for the control function, i. e. these values of u belong to the compact

set U .

Proposition 1. Let the assumption (A) holds true. Then the control system (1)–(2)
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is asymptotically stabilizable to the optimal static set S by the following feedback

k(s, x) =























































u−
d
(s, x), if (s, x) ∈ Sd ∩ Ωd and s > s̃,

u+

d
(s, x), if (s, x) ∈ Sd ∩ Ωd and s ≤ s̃,

u−
u (s, x), if (s, x) ∈ Su ∩Ωd and s > s̃,

u+
u (s, x), if (s, x) ∈ Su ∩Ωd and s ≤ s̃,

um(s, x), if (s, x) ∈ Sm ∩ Ωd.

Proof. The proof is too technical to be given in full length. For that reason we

concentrate our selves on some cases which allow us to present its main features. We set

z = (s, x)T , F (z, u) = (f(z, u), g(z, u))T , where

g(z, u) = g(s, x, u) =
µmaxs

ks + s
x− ux, f(z, u) = f(s, x, u) = −k1

µmaxs

ks + s
x+ u(sin − s).

The compactness of the sets Ωd and U implies the existence of some real constants κ > 0,

M > 1 and L > 1 such that for all z1, z2, z ∈ Ωd and u ∈ U the following inequalities

k(s, x) ≥ κ, ‖F (z, u)‖ ≤ M, ‖F (z1, u)− F (z2, u)‖ ≤ L‖z1 − z2‖

hold true. We choose h with

0 < h <
1

2LM
·min







ηm,
ηu

√

1 + (k−1 )
2

,
ηd

√

1 + (k+1 )
2







.

Let π = {ti}
∞
i=0 with 0 = t0 < t1 < t2 < ... be an arbitrary partition of [0,+∞) with

diameter not greater than h.

Claim 1. Let z0 = (s0, x0)T be an arbitrary point from the set Ωd∩Sm. The trajectory

z(·) of (1)–(2) (corresponding to the feedback k(s, x)) is well defined on [0,∞) and there

exists a positive real T such that z(t) ∈ S for t ≥ T .

Proof of claim 1. We set ν± = (±1,±k∓1 )
T . It is straightforward to check that

〈ν±, F (z, u)〉 ≤ 0, z ∈ Ωd ∩ Sm, u ∈ U .

This inequality implies (cf. e. g. [3], [10]) that every trajectory of the system (1)–(2),

starting from a point of Sm remains in Sm. We set zi = z(ti), ui = k(zi), i = 0, 1, 2, . . ..

Let us assume that zi = (si, xi)T ∈ Ωd ∩ Sm and t ∈ [ti, ti+1]. If s
i ≥ s2 then

d

dt
s(t) = −k1

µmaxs

ks + s
x ≤ ηl := −k−1

µ−
maxs̃

ks + sin

sin − s̃

k+1
< 0.(9)

Let now si ≤ s1. According to the choice of h we have

d

dt
s(t) =

d

dt
s(ti) + (

d

dt
s(t)−

d

dt
s(ti))

=
−k1µmaxs

ks + s
x+ k+1

µ+
maxs

k−s + s
x+ ηm + ‖F (z(t), ui)− F (zi, ui)‖
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≥ ηm − L‖z(t)− zi‖ ≥ ηm − L

∫ t

ti

‖F (z(τ), ui)‖dτ

≥ ηm − LM(ti+1 − ti) ≥ ηm − LMh ≥
ηm
2
.

The invariance of the set Sm with respect to trajectories of (1)–(2), the last inequality

and (9) imply that z(t), t ∈ [ti, ti+1], does not leave the set Sm ∩Ωd. Therefore, starting

with z0 ∈ Sm ∩ Ωd we obtain that zi ∈ Sm ∩ Ωd for all i = 1, 2, . . .. Thus z(·) is defined

on [0,∞). Moreover, the last inequality and (9) imply that z(t) ∈ S for

t >
2γ

min(ηm, ηl)
, where γ =

{

s0 − s2, if s0 ≥ s2,

s1 − s0, if s0 ≤ s1.

Claim 2. Let z0 = (s0, x0)T be an arbitrary point from the set Ωd ∩ (Su ∪ Sd). The

trajectory z(·) of (1)–(2) (corresponding to the feedback k(s, x)) is well defined on [0,∞)

and:

(i) there exists a positive real T such that z(t) ∈ Ωd ∩ Sm for t ≥ T ;

(ii) z(t) ∈ Ωd ∩ (Su ∪ Sd) for every t ≥ 0 and limt→∞ distS (z(t)) = 0.

Proof of claim 2. Without loss of generality let us assume that z0 = (s0, x0)T ∈ Ωd∩Su

and z(·) = (s(·), x(·))T be the corresponding trajectory. It is straightforward to check

that for every z ∈ Ωd ∩ Su and for every u ∈ U

〈ν+, F (z, u)〉 ≤ u · (sin − s− k−1 x) = −u ·

√

1 + (k−1 )
2 · distAB (z)

≤ −κ ·

√

1 + (k−1 )2 · distAB (z)

(here distAB (z) denotes the distance between the point z and the line determened by

the points A and B).

We set τ = (k−1 ,−1)T . Clearly, τ is parallel to the line segment AB. As in the proof

of Claim 1 we have

〈τ,
d

dt
z(t)〉

{

≤ −ηu/2 if s > s̃,

≥ ηu/2 if s ≤ s̃.

The above estimations for 〈ν+, d

dt
z(t)〉 and 〈τ, d

dt
z(t)〉 show that the trajectory z(·) does

not leave the set Ωd according to Theorem 2.4, p. 191 in [3]. The following two cases are

then possible:

(a) there exists a positive real T such that z(t) ∈ Ωd ∩ Sm for t ≥ T ;

(b) z(t) ∈ Ωd ∩ Su for every t ≥ 0.

Let us consider the case (b). The estimations for 〈τ, d

dt
z(t)〉 show that there exists

a positive real T such that z(t) ∈ Ωd ∩ {(s, x) |s1 ≤ s ≤ s2} for all t ≥ T . We set

ξ(·) = s(·) + k−1 x(·) − sin. Then

d

dt
ξ(t) = 〈ν+,

d

dt
z(t)〉 ≤ −κ · (sin − s− k−1 x) = −κξ(t)

and hence, ξ(t) ≤ exp(−κt) · ξ(0). Since ξ(t) =
√

1 + (k−1 )
2 · distS (z(t)) for t ≥ T ,

the last estimation shows that limt→∞ distS (z(t)) = 0 and the proof of Claim 2 is
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completed.

The proof of Proposition 1 follows directly from Claim 1 and Claim 2. �

Fig. 2. Feedback control with initial point (0.78, 0.089)

4. Numerical Experiments. For our computer simulation we take the following

average values for the coefficients in the model (1)–(3), see e. g. [1], [4], [6]:

µmax = 0.4; ks = 0.4; k1 = 27.4; k2 = 75; sin = 3.

We consider the above values for µmax, ks, k1 and k2 as centers of the corresponding

intervals; the radii are given by rα · α, α ∈ {µmax, ks, k1, k2} with 0 < rα < 1.

All computations presented below are performed by the computer algebra system

Maple V Release 3. The designed worksheet proceeds as follows. We start with some

initial values s(0), x(0) and an appropriate control according to Proposition 1. With

randomly chosen points for µmax, ks, k1, k2 from the corresponding intervals we solve

numerically the system (1)–(2) on a mesh ti = (i − 1)h, i = 1, 2, . . . , n; thereby at any

point ti we pick out the appropriate feedback. After n steps we choose new random

values for the coefficients and repeat the process.

With rk1
= 0.035 and rα = 0.1 for α ∈ {µmax, ks, k2} Figure 2 visualizes the numerical

outputs for initial data s(0) = 0.78, x(0) = 0.089.
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ОБРАТНА ВРЪЗКА ЗА УПРАВЛЕНИЕ НА ЕДИН АНАЕРОБЕН

ФЕРМЕНТАЦИОНЕН ПРОЦЕС В УСЛОВИЯ НА НЕОПРЕДЕЛЕНОСТ

Михаил Кръстанов, Нели Димитрова

Разгледан е един непрекъснат модел на метанова ферментация, описан чрез дву-

мерна управляема система при наличие на неопределености в коефициентите.

Пресметнато е множеството на оптималните статични точки по отношение на

даден производствен критерий. Конструирана е стабилизираща обратна връзка.

Представени са и резултати от числени ескперименти извършени с помощта на

системата за компютърна алгебра Maple.
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