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DISTRIBUTION OF THE CRITICAL POINTS OF
WEIERSTRASS PROCEDURE ~

Nikolay Vesselinov Kyurkchiev, Vladimir Hristov Hristov

In this paper, the distribution of the critical initial approximations of Weierstrass’
method is considered. Numerical examples, which illustrate our results are given,
too.

1. Introduction. Investigations of divergent starting points for every numerical
method for finding all roots of a given polynomial show that for any monic polynomial

(1) P()=2"4+a, 12" '+ +arz+ao

of degree n, there exists a set Gy C C™ such these methods, starting from zo = z € Gy,
do not converge to the roots of P. This NS — set [4] is obtained as the set of solutions
of a nonlinear systems of n equations. Moreover, in general, sets of NS - type are not
the only divergent ones. The study of the distribution of the critical initial points is very
compicated.

2. Main results. One of the most efficient methods for the simultaneous approxi-
mations of all simple polynomial zeros is the Weierstrass method

P(zF
2) zf“:sz#, (i=1,....,n3k=0,1,2,...).
[IGE =25
i

Many authors have observed that method (2) possesses a global convergence in practice
for almost all starting points. This statement can be precised. This was proved for n = 2
and for cubic polynomial P(z) = 23, but this is an open problem in the general case
n > 3.

The following divergence theorem is more often applicable [3]:

*This work is partially supported by the Bulgarian Ministry of Education, Sciences, and Technologies,
Contract MM-515/95
Subject Classifications: AMS: 65HO05.
Keywords: Divergent sets, Critical points, Polynomial roots.

192



Let P(z) be a monic polynomial of degree n with ag # 0. If the vector of initial approxi-

mations z° = (29,...,29) satisfies the system
an—1 =0,
n
}: 0,0 _
2)24 +ap_2 =0,
I<s
(3) 3
0,00 _
2 2y 242y — ap—3 =0,
I<s<t

(n= DI+ (~1)mao =0,

then z1 = (0,...,0) and the Weierstrass method (2) fails.
Let the critical points, obtained by (3) are zJ.
We have the following
Theorem. Let

1
|a| ”
R = _ 1.
(03%125—271 — k-1 o

All the points 22, i =1,...,n lie in the ring-shaped region
Jao (T = 1) 1T

@ Lo T rn@E TRy —2ry) SIS Ty TR=T

Proof. We observe that there is only one NS - divergent starting vector z° =

(29,...,20) € C™ for the method (2), not counting the permutations of the components
of 22 and it is given by the set of roots of the algebraic polynomial

Q)= (z—2))(z—23)...(z — zp).
We see that

5 — n n— n—t

5) Q) == )

The proof is obvious, because a simple rearrangiment of the system (3) gives Vieta’s
formulae for the polynomial Q(z).

The conditions a,—1 =0, R > 1 imply that n > 2. Let z be a zero of Q(z) such that
|z| > 1. According to [6],we have

n—1 -1
2" < RM(A+ |2+ + [2]"72) = Rn|2|||717
Z j—
ie.
1" 21" I
= |z
|z =1 = Jz|n1 =17 2|71
and

1 /1
|Z|S§+ Z-I—R".
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Next, we prove that Q(z) has no zero in

laol (T = 1)
(n—1)(T"2(T + 1)(I2 — T + R") — 2R")’
Let t(z) = (1 — 2)Q(z). According to [6], we have

2] <

n—2
__ __ag ak _ Gg—1 k n n—1_ ,n+l
t(z) - n—1 § :<n—k—1 n—k) 2P+ z0 + an—2z z
k=1
_ a
- 7»,1_01 + )\(Z)

IfT=3+4/5+R"<1+R"2 then

n—2
max|A(z)] < T 4+ T" 4 |a,_o| T 1 +
max|A) sl + 3

:TnJrl_’_Tn_i_RnTnfl_i_QRn (T+T2++Tn72)

Tk

ag _ Qk—1
n—k—1 n—=k

_ TnJrl 4+ " +RnTn71 + 2RnTT;:_2;1

= (T" 3T +1)(IT? - T + R") — 2R").

Hence on |z| < T

()] > 490 > A2l B

n—1 n—1 ?\z\:T
by Schwarz’s lemma,
laol 2|

tz)| > 220l
= Sl |

(T"=(T+1)(T* =T + R") = 2R"),,

and |t(z)| > 0 if

lao|(T' — 1)
(n—1)(T"2(T+1)(T?2 - T + R") — 2R")’
This completes the proof of the theorem.

Remark. Denoting by z1,..., 2y, the zeros of the polynomial Q(z) from (5) with z,
being a zero of smallest modulus, we have

2| <

lao|
n—1’

1
|a0| "
< | — .
|Zn| - (n 1

Different aspects of this field can be found in [5], [2].

|zn|" < |z2122...24] =

whence

ExaMpPLE 1. For illustration, we consider NS-divergent starting vector of the equation
P(z)=2>4+22> - 52— 6=0.
The exact zeros of P(z) are 2, —3, —1. The corresponding NS - polynomial Q(z) of the
form (5) is given by
Q(z) = 2> + 52+ 3.
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The zeros of Q(z) are

21 = —0.564099733,

2y = 0.282049866 — 2.2888111284,
23 = 0.282049866 + 2.2888111284,
22| = | 23] = 2.30612413.

y -
2=+
/\rng.g

NI
*N|z| = 0.056

All zeros of the polynomial Q(z), i.e. the critical initial approximations for the Weier-
strass procedure, lie in the ring-shaped region

0.0561 < |2| < 2.7919.

Example 2. Concerning specific polynomials, we considered polynomials of the
following classes

Po(2) = ap2™ + azz" 2 + asz" "t + - +ay,

where
apg = 1,@2 = —%,
k
Qop = —Yy L1 4 .
2k = T2k 2j+1%2(k—j)>
j=1
k=2,3,...

The zeros of P, (z) are the abscissae of Chebyshev numerical integration formulae.

It has been conjuctured by S. Moriguti that all the zeros of
_on ne2 An_12 if nis odd
Po(2) = 2" + azz Tt { a, ifniseven

for n — oo would be arranged densely on a closed curve which approaches a closed curve
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Fig. 1. The conjecture by S. Moriguti.
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a) Roots of the polynomial Qgo(2).

Fig. 2. Critical points of the Weierstrass’ procedure.

b) Roots of the polynomial Qgo(z) /zoom/.



defined by (see Fig. 1)

(Z+ 1)z~2+»1 B 2
(Z o 1)7,;1

Let n = 80. The corresponding NS-polynomial Qso(z) is given by
40

80 a2 80-2i
z)=2z" — E ——z :
Qso(2) 2 -1
The non-attractive initial approximations for the iterative method (2) (zeros of Qso)

are visualized in Fig.2.
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PA3IIPEAEJIEHUE HA KPUTUYHUTE TOYKU HA UTEPALIMSITA HA
BAVEPIIIPAC

Hukounait Becenmuos Kropkuunes, Biaagumup Xpucro Xpucros

B ta3u cratus ce Tperupar BBIPOCH CBBHP3AHU C PA3IPEIETEHUETO HA KPUTHIHUTE
HaJYaJ HUA alPOKCUMAIIMU 3a UTeparusaTa Ha Baitepipac.
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