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DISTRIBUTION OF THE CRITICAL POINTS OF

WEIERSTRASS PROCEDURE
*

Nikolay Vesselinov Kyurkchiev, Vladimir Hristov Hristov

In this paper, the distribution of the critical initial approximations of Weierstrass’
method is considered. Numerical examples, which illustrate our results are given,
too.

1. Introduction. Investigations of divergent starting points for every numerical
method for finding all roots of a given polynomial show that for any monic polynomial

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0(1)

of degree n, there exists a set Gf ⊂ Cn such these methods, starting from z0 = z ∈ Gf ,
do not converge to the roots of P . This NS – set [4] is obtained as the set of solutions
of a nonlinear systems of n equations. Moreover, in general, sets of NS - type are not
the only divergent ones. The study of the distribution of the critical initial points is very
compicated.

2. Main results. One of the most efficient methods for the simultaneous approxi-
mations of all simple polynomial zeros is the Weierstrass method

zk+1
i = zki −

P (zki )
n
∏

j 6=i

(zki − zkj )

, (i = 1, . . . , n; k = 0, 1, 2, . . .).(2)

Many authors have observed that method (2) possesses a global convergence in practice
for almost all starting points. This statement can be precised. This was proved for n = 2
and for cubic polynomial P (z) = z3, but this is an open problem in the general case
n ≥ 3.

The following divergence theorem is more often applicable [3]:
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Let P (z) be a monic polynomial of degree n with a0 6= 0. If the vector of initial approxi-
mations z0 = (z01 , . . . , z

0
n) satisfies the system

an−1 = 0,

n
∑

l<s

z0l z
0
s + an−2 = 0,

2

n
∑

l<s<t

z0l z
0
sz

0
t − an−3 = 0,

· · ·

(n− 1)
∏

j=1

z0j + (−1)na0 = 0,

(3)

then z1 = (0, . . . , 0) and the Weierstrass method (2) fails.

Let the critical points, obtained by (3) are z0i .

We have the following

Theorem. Let

R =

(

max
0≤k≤n−2

|ak|

n− k − 1

)
1
n

> 1.

All the points z0i , i = 1, . . . , n lie in the ring-shaped region

|a0|(T − 1)

(n− 1) (T n−2(T + 1)(T 2 − T +Rn)− 2Rn)
≤ |z| ≤

1

2
+

√

1

4
+Rn = T.(4)

Proof. We observe that there is only one NS - divergent starting vector z0 =
(z01 , . . . , z

0
n) ∈ Cn for the method (2), not counting the permutations of the components

of z0i and it is given by the set of roots of the algebraic polynomial

Q(z) = (z − z01)(z − z02) . . . (z − z0n).

We see that

Q(z) = zn −

n
∑

i=2

an−i

i− 1
zn−i.(5)

The proof is obvious, because a simple rearrangiment of the system (3) gives Vieta’s
formulae for the polynomial Q(z).

The conditions an−1 = 0, R > 1 imply that n ≥ 2. Let z be a zero of Q(z) such that
|z| > 1. According to [6],we have

|z|n ≤ Rn(1 + |z|+ · · ·+ |z|n−2) = Rn |z|
n−1 − 1

|z| − 1
,

i.e.
Rn

|z| − 1
≥

|z|n

|z|n−1 − 1
>

|z|n

|z|n−1
= |z|

and

|z| ≤
1

2
+

√

1

4
+Rn.
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Next, we prove that Q(z) has no zero in

|z| <
|a0|(T − 1)

(n− 1) (T n−2(T + 1)(T 2 − T +Rn)− 2Rn)
.

Let t(z) = (1 − z)Q(z). According to [6], we have

t(z) = − a0

n−1 −
n−2
∑

k=1

(

ak

n−k−1 − ak−1

n−k

)

zk + zn + an−2z
n−1 − zn+1

= − a0

n−1 + λ(z).

If T = 1
2 +

√

1
4 +Rn < 1 +Rn−2, then

max
|z|=T

|λ(z)| ≤ T n+1 + T n + |an−2|T
n−1 +

n−2
∑

k=1

∣

∣

∣

ak

n−k−1 −
ak−1

n−k

∣

∣

∣
T k

= T n+1 + T n +RnT n−1 + 2Rn
(

T + T 2 + · · ·+ T n−2
)

= T n+1 + T n +RnT n−1 + 2RnT Tn−2−1
T−1

= T
T−1

(

T n−2(T + 1)(T 2 − T +Rn)− 2Rn
)

.

Hence on |z| ≤ T

|t(z)| ≥
|a0|

n− 1
− |λ(z)| ≥

|a0|

n− 1
−

|z|

T
max
|z|=T

|λ(z)|

by Schwarz’s lemma,

|t(z)| ≥
|a0|

n− 1
−

|z|

T − 1

(

T n−2(T + 1)(T 2 − T +Rn)− 2Rn
)

,

and |t(z)| > 0 if

|z| <
|a0|(T − 1)

(n− 1) (T n−2(T + 1)(T 2 − T +Rn)− 2Rn)
.

This completes the proof of the theorem.

Remark. Denoting by z1, . . . , zn, the zeros of the polynomial Q(z) from (5) with zn
being a zero of smallest modulus, we have

|zn|
n ≤ |z1z2 . . . zn| =

|a0|

n− 1
,

whence

|zn| ≤

(

|a0|

n− 1

)
1
n

.

Different aspects of this field can be found in [5], [2].

Example 1. For illustration, we consider NS-divergent starting vector of the equation

P (z) = z3 + 2z2 − 5z − 6 = 0.

The exact zeros of P (z) are 2, −3, −1. The corresponding NS - polynomial Q(z) of the
form (5) is given by

Q(z) = z3 + 5z + 3.
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The zeros of Q(z) are

z1 = −0.564099733,
z2 = 0.282049866− 2.288811128i,
z3 = 0.282049866+ 2.288811128i,
|z2| = |z3| = 2.30612413.

✻

✲
x

y

✫✪
✬✩

✛ |z | = 2 .8
q
qq
z = x + iy

❝
❅

❅■
|z | = 0 .056

All zeros of the polynomial Q(z), i.e. the critical initial approximations for the Weier-
strass procedure, lie in the ring-shaped region

0.0561 ≤ |z| ≤ 2.7919.

Example 2. Concerning specific polynomials, we considered polynomials of the
following classes

Pn(z) = a0z
n + a2z

n−2 + a4z
n−4 + · · ·+ an,

where
a0 = 1, a2 = −n

6 ,

a2k = − n
2k

k
∑

j=1

1
2j+1a2(k−j),

k = 2, 3, . . .

The zeros of Pn(z) are the abscissae of Chebyshev numerical integration formulae.

It has been conjuctured by S. Moriguti that all the zeros of

Pn(z) = zn + a2z
n−2 + · · ·+

{

an−1z if n is odd
an if n is even

for n → ∞ would be arranged densely on a closed curve which approaches a closed curve
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defined by (see Fig. 1)
∣

∣

∣

∣

∣

(z + 1)
z+1

2

(z − 1)
z−1

2

∣

∣

∣

∣

∣

= 2

Let n = 80. The corresponding NS-polynomial Q80(z) is given by

Q80(z) = z80 −
40
∑

i=1

a2i

2i− 1
z80−2i.

The non-attractive initial approximations for the iterative method (2) (zeros of Q80)
are visualized in Fig.2.
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РАЗПРЕДЕЛЕНИЕ НА КРИТИЧНИТЕ ТОЧКИ НА ИТЕРАЦИЯТА НА
ВАЙЕРЩРАС

Николай Веселинов Кюркчиев, Владимир Христов Христов

В тази статия се третират въпроси свързани с разпределението на критичните

начални апроксимации за итерацията на Вайерщрас.
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