SUBCRITICAL BRANCHING PROCESSES WITH NON HOMOGENEOUS IMMIGRATION*

Abstract

Kosto V. Mitov Subcritical Galton-Watson branching processes with non-homogeneous, statedependent immigration is considered. It is obtained the asymptotic behaviour of the first and second factorial moments, when the immigration intensity tends to zero. The limit theorems are also proved.

1. Model and basic equations. Let on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$ be given two independent sets of nonnegative, integer valued random variables (r.v.):
a) $X=\left\{X_{n}(i), i=1,2, \ldots, n=1,2, \ldots\right\}-\mathrm{a}$ set of independent, identically distributed r.v. with probability generating function (p.g.f.) $f(s)=\mathbf{E}\left\{s^{X_{i}(n)}\right\}=\sum_{k=0}^{\infty} p_{k} s^{k}$, $|s| \leq 1$.
b) $Y=\left\{Y_{n}, n=0,1,2, \ldots\right\}-$ a set of independent r.v. with p.g.f. $g_{n}(s)=\mathbf{E}\left\{s^{Y_{n}}\right\}=$ $\sum_{k=0}^{\infty} q_{k}(n) s^{k},|s| \leq 1$.

We define the process $Z_{n}, n=0,1,2, \ldots$ as follows

$$
\begin{equation*}
Z_{0}=Y_{0}, \quad Z_{n+1}=\sum_{i=1}^{Z_{n}} X_{n+1}(i)+I_{\left\{Z_{n}=0\right\}} Y_{n+1}, \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where it is always assumed that $\sum_{k=1}^{0} *=0$.
The process Z_{n} defined by (1.1) is a modification of the classical Galton-Watson branching process, which can be described as follows: It starts with $Y_{0}>0$ particles in the 0-th generation and evolves as a Galton-Watson process up to the moment when $Z_{n}=0$. Then in the next generation $n+1 Y_{n+1}>0$ new particles immigrate, and a new Galton-Watson process starts and so on. If the r.v. $Y_{n}, n=0,1,2, \ldots$ are nonidentically distributed, Z_{n} is a non-homogeneous Markov chain with the state space \mathbf{Z}_{+}. If $g_{n}(s) \equiv g(s)$, i.e. the distributions of immigrants are equivalent, we obtain the model, which was introduced and investigated by Foster [4] and Pakes [5]. In this case, Z_{n} is a homogeneous Markov chain.

Let us denote $P_{k}(n)=\mathbf{P}\left\{Z_{n}=k\right\}, \quad k=0,1,2, \ldots$ Then $H_{n}(s)=\sum_{k=0}^{\infty} P_{k}(n) s^{n}=$ $\mathbf{E}\left\{s^{Z_{n}}\right\}, \quad|s| \leq 1$ is the p.g.f. of the number of particles existing in the n-th generation.

[^0]We denote $R_{n}(s)=1-H_{n}(s), R_{n}=R_{n}(0)=\mathbf{P}\left\{Z_{n}>0\right\}$, and $f_{0}(s)=s, \quad f_{1}(s)=$ $f(s), \quad f_{n+1}(s)=f\left(f_{n}(s)\right), \quad n=2,3, \ldots$, are the iterations of the function $f(s)$. Denote also $Q_{n}(s)=1-f_{n}(s), \quad Q_{n}=Q_{n}(0)$. It is well-known that (see eg. [2]), that $f_{n}(s)$ is the p.g.f. of a Galton-Watson process without immigration, starting with one ancestor. For the factorial moments we will use the following notations: $a=f^{\prime}(1)=\mathbf{E}\left\{X_{n}(i)\right\}, \quad 2 b=$ $f^{\prime \prime}(1)=\mathbf{E}\left\{X_{n}(i)\left(X_{n}(i)-1\right)\right\}, m_{n}=g_{n}^{\prime}(1)=\mathbf{E}\left\{Y_{n}\right\}, \quad c_{n}=g_{n}^{\prime \prime}(1)=\mathbf{E}\left\{Y_{n}\left(Y_{n}-1\right)\right\}$, $A_{n}=H_{n}^{\prime}(1)=\mathbf{E}\left\{Z_{n}\right\}, \quad B_{n}=H_{n}^{\prime \prime}(1)=\mathbf{E}\left\{Z_{n}\left(Z_{n}-1\right)\right\}$.

The basic tools for the investigation of the process Z_{n} are the equations for the p.g.f. obtained in [1]:

$$
\begin{gather*}
H_{0}(s)=g_{0}(s), \quad H_{n+1}(s)=H_{n}(f(s))-\left(1-g_{n}(f(s)) H_{n}(0)\right. \tag{1.2}\\
H_{n+1}(s)=g_{0}\left(f_{n+1}(s)\right)-\sum_{k=0}^{n}\left(1-g_{n-k}\left(f_{k}(s)\right) H_{n-k}(0)\right. \tag{1.3}
\end{gather*}
$$

and the equations for the first and second factorial moments A_{n} and B_{n} :

$$
\begin{gather*}
A_{n+1}=m_{0} a^{n+1}+\sum_{k=0}^{n} P_{0}(k) m_{k} a^{n-k} \tag{1.4}\\
B_{n+1}=c_{0} a^{2(n+1)}+2 b m_{0} \frac{a^{n+1}\left(a^{n+1}-1\right)}{a(a-1)}+\sum_{k=0}^{n} P_{0}(k) c_{k} a^{2(n-k)} \\
+2 b \sum_{k=0}^{n} P_{0}(k) m_{k} \frac{a^{n-k}\left(a^{n-k}-1\right)}{a(a-1)}
\end{gather*}
$$

which can be obtained by differentiating of (1.3) with respect to s and setting $s=1$, using also the known results (see [2])

$$
\begin{equation*}
f_{n}^{\prime}(1)=a^{n} ; \quad f_{n}^{\prime \prime}(1)=2 b a^{n}\left(a^{n}-1\right) /(a(a-1)) \tag{1.6}
\end{equation*}
$$

2. Basic conditions and results. To the end of the paper we assume the following conditions:

$$
\begin{equation*}
0<a=f^{\prime}(1)<1 \quad 0<2 b=f^{\prime \prime}(1)<\infty, \quad(\text { subcritical case }) \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
d_{1}=\sup _{n} m_{n}<\infty, \quad d_{2}=\sup _{n} c_{n}<\infty \tag{2.2}\\
0<m_{n} \rightarrow 0, \quad c_{n} \rightarrow 0, \quad n \rightarrow \infty \tag{2.3}
\end{gather*}
$$

The condition that the immigration intensity tends to zero is, in some sense, necessary and sufficient for $\lim _{n \rightarrow \infty} \mathbf{P}\left\{Z_{n}>0\right\}=0$.

Theorem 2.1. Let the conditions (2.1), (2.2) and (2.3) hold. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{P}\left\{Z_{n}>0\right\}=0 \tag{2.4}
\end{equation*}
$$

Theorem 2.2. Let the conditions (2.1) and (2.2) hold, $c_{n} \rightarrow 0, n \rightarrow \infty$ and also (2.4) is satisfied. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{E}\left\{Y_{n}\right\}=0 \tag{2.5}
\end{equation*}
$$

So, the behaviour of a subcritical process with immigration in the state zero, which intensity tends to zero, relates to the behaviour of the classical Galton-Watson process without any immigration. The next theorems give some asymptotic results for Z_{n}, under the different types of convergence in (2.3).

Theorem 2.3. Assume (2.1), (2.2) and (2.3). If also

$$
\begin{equation*}
\lim m_{n} a^{-n}=M, 0<M<\infty, \quad c_{n}=O\left(a^{n}\right), \quad n \rightarrow \infty, \tag{2.6}
\end{equation*}
$$

then, together with $n \rightarrow \infty$:

$$
\begin{gather*}
R_{n}=\mathbf{P}\left\{Z_{n}>0\right\} \sim M K n a^{n}, \tag{2.7}\\
A_{n}=\mathbf{E}\left\{Z_{n}\right\} \sim M n a^{n}, \tag{2.8}\\
B_{n}=\mathbf{E}\left\{Z_{n}\left(Z_{n}-1\right)\right\} \sim 2 b M n a^{n} /(a(1-a)), \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{E}\left\{s^{Z_{n}} \mid Z_{n}>0\right\}=F(s) . \tag{2.10}
\end{equation*}
$$

Theorem 2.4. Assume (2.1), (2.2) and (2.3). If also

$$
\begin{equation*}
\sum_{k=0}^{\infty} m_{n} a^{-n}=M, 0<M<\infty, \quad c_{n}=o\left(a^{n}\right), \quad n \rightarrow \infty \tag{2.11}
\end{equation*}
$$

then, together with $n \rightarrow \infty$:

$$
\begin{gather*}
R_{n}=\mathbf{P}\left\{Z_{n}>0\right\} \sim\left(m_{0}+P / a\right) K a^{n}, \tag{2.12}\\
A_{n}=\mathbf{E}\left\{Z_{n}\right\} \sim\left(m_{0}+P / a\right) a^{n}, \tag{2.13}\\
B_{n}=\mathbf{E}\left\{Z_{n}\left(Z_{n}-1\right)\right\} \sim 2 b\left(m_{0}+P / a\right) a^{n}, \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{E}\left\{s^{Z_{n}} \mid Z_{n}>0\right\}=F(s) . \tag{2.15}
\end{equation*}
$$

where $P \equiv \sum_{k=0}^{\infty} P_{0}(k) m_{k} a^{-k} \in(0, \infty)$.
Remark. The function $F(s)$ is the p.g.f. of the conditional limit distribution of the Galton-Watson process without immigration (see (3.2)).
3. Preliminary results. Under the conditions (2.1) the following well-known results for subcritical Galton-Watson processes hold (see [2]):

$$
\begin{equation*}
Q_{n} \sim K a^{n}, \quad n \rightarrow \infty, \tag{3.1}
\end{equation*}
$$

where $K \in(0, \infty)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{n}(s) / Q_{n}=1-F(s), \quad 0 \leq s<1 \tag{3.2}
\end{equation*}
$$

where the p.g.f. $F(s)$ is the unique solution of the functional equation $1-F(f(s))=$ $a(1-F(s))$ and $F(0)=0, \quad F(1)=1, \quad F^{\prime}(1)=K^{-1}$, (3.3) $\quad 0<f_{n}(0) \leq f_{n}(s) \leq 1, \quad s \leq f_{n}(s) \uparrow 1, \quad n \rightarrow \infty$, uniformly in $0 \leq s<1$.

The p.g.f. $g_{n}(s), n=0,1,2, \ldots$ have the following properties:

For $0 \leq s \leq 1$

$$
\begin{equation*}
1-g_{n}(s)=m_{n}(1-s)-\left(c_{n}(s) / 2\right)(1-s)^{2} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{gather*}
0 \leq c_{n}(s) \leq c_{n}, \quad c_{n}(s) \rightarrow c_{n}, \quad s \uparrow 1 \tag{3.5}\\
m_{n}(1-s)-\left(c_{n} / 2\right)(1-s)^{2} \leq 1-g_{n}(s) \leq m_{n}(1-s) . \tag{3.6}
\end{gather*}
$$

The proofs of the above results can be found in [2].
The next lemmas state, for easy references, the well known analytical facts.
Lemma 3.1. If the sequence $x_{n} \geq 0, n=0,1,2, \ldots$ converges to $0 \leq x<\infty$, and $\sum_{k=0}^{\infty} y_{k}=y<\infty$ is the convergent series with positive components, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x_{k} y_{n-k}=x y \tag{3.7}
\end{equation*}
$$

Lemma 3.2. If $x_{n} \geq 0, n=0,1,2, \ldots$ and $y_{n} \geq 0, n=0,1,2, \ldots$ are such that $\lim _{n \rightarrow \infty} x_{n}=x>0$ and $\lim _{n \rightarrow \infty} y_{n}=y>0$, then

$$
\begin{equation*}
\sum_{k=0}^{n} x_{k} y_{n-k} \sim x y n, \quad n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

4. Proofs of the basic results.

Proof of Theorem 2.1. We obtain from (1.3), and (3.4), for $s=0$,

$$
\begin{gather*}
R_{n+1}=m_{0} Q_{n+1}-\frac{1}{2} c_{0}\left(f_{n+1}(0)\right) Q_{n+1}^{2} \tag{4.1}\\
+\sum_{k=0}^{n} m_{k} P_{0}(k) Q_{n-k}-\frac{1}{2} \sum_{k=0}^{n} P_{0}(k) c_{k}\left(f_{n-k}(0)\right) Q_{n-k}^{2}
\end{gather*}
$$

Now, (3.1) gives

$$
\begin{equation*}
m_{0} Q_{n+1} \sim m_{0} K a^{n} \rightarrow 0, \quad n \rightarrow \infty \tag{4.2}
\end{equation*}
$$

Using also (3.3) and (3.5) we have

$$
\begin{equation*}
c_{0}\left(f_{n+1}(0)\right) Q_{n+1}^{2} \sim c_{0} K^{2} a^{2 n} \rightarrow 0, \quad n \rightarrow \infty \tag{4.3}
\end{equation*}
$$

Further, (3.1) yields $\sum_{k=0}^{\infty} Q_{k}<\infty, \quad \sum_{k=0}^{\infty} Q_{k}^{2}<\infty$. Since $0 \leq P_{0}(k) \leq 1$ and (2.3), then
Lemma 3.1 gives $\sum_{k=0}^{n} m_{k} P_{0}(k) Q_{n-k} \rightarrow 0, \quad n \rightarrow \infty$. Similarly, using also (3.5), we obtain

$$
\begin{equation*}
0 \leq \sum_{k=0}^{n} P_{0}(k) c_{k}\left(f_{n-k}(0)\right) Q_{n-k}^{2} \leq \sum_{k=0}^{n} P_{0}(k) c_{k} Q_{n-k}^{2} \rightarrow 0, \quad n \rightarrow \infty \tag{4.4}
\end{equation*}
$$

Finally, (4.1)-(4.4) yield (2.4). The theorem is proved.
Proof of Theorem 2.2. We use the representation (4.1) again. Under the conditions of the theorem (4.2), (4.3) and (4.4) hold. Since $R_{n} \rightarrow 0, n \rightarrow \infty$, then from (4.1) we 208
obtain

$$
\begin{equation*}
\sum_{k=0}^{n} m_{k} P_{0}(k) Q_{n-k} \rightarrow 0, \quad n \rightarrow \infty \tag{4.5}
\end{equation*}
$$

Let us assume that $\limsup _{n \rightarrow \infty} m_{n}=m>0$. Hence, there exists a subsequence $m_{n_{k}}$ such that $m_{n_{k}} \rightarrow m>0, k \rightarrow \infty$. From $P_{0}(k)=1-R_{k} \rightarrow 1, \quad k \rightarrow \infty$ it follows that $m_{n_{k}} P_{0}\left(n_{k}\right) \rightarrow m>0, \quad k \rightarrow \infty$. Using the last relation and the convergence of the series $\sum_{k=0}^{\infty} Q_{k}$ we get

$$
\sum_{j=0}^{n_{k}} P_{0}(j) m_{j} Q_{n_{k}-j} \geq \sum_{j=n_{0}}^{n_{k}} P_{0}(j) m_{j} Q_{n_{k}-j} \rightarrow m \sum_{j=0}^{\infty} Q_{n_{j}}>0, \quad k \rightarrow \infty
$$

In the last two sums j takes as values only the indexes of the subsequence. Therefore, $\liminf _{k \rightarrow \infty} \sum_{j=0}^{n_{k}} P_{0}(j) m_{j} Q_{n_{k}-j}>0$, which contradicts to (4.5). The theorem is proved.

Proof of Theorem 2.3. Let $s \in[0,1)$ be fixed. From (1.3) and (3.4) it follows that

$$
\begin{gather*}
R_{n+1}(s)=m_{0} Q_{n+1}(s)-\frac{1}{2} c_{0}\left(f_{n+1}(s)\right) Q_{n+1}^{2}(s) \tag{4.6}\\
+\sum_{k=0}^{n} m_{k} P_{0}(k) Q_{n-k}(s)-\frac{1}{2} \sum_{k=0}^{n} P_{0}(k) c_{k}\left(f_{n-k}(s)\right) Q_{n-k}^{2}(s)
\end{gather*}
$$

First of all, using (3.2) and (3.1) we obtain

$$
\begin{equation*}
m_{0} Q_{n+1}(s) \sim m_{0} K(1-F(s)) a^{n+1}, \quad n \rightarrow \infty \tag{4.7}
\end{equation*}
$$

From (3.5), (3.3) we obtain

$$
\begin{equation*}
0 \leq c_{0}\left(f_{n+1}(s)\right) Q_{n+1}^{2}(s) \leq c_{0} Q_{n+1}^{2} \sim c_{0} K^{2} a^{2 n}, \quad n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Further from Theorem 2.1 and (2.6) it follows that

$$
\begin{equation*}
P_{0}(n) m_{n} a^{-n} \rightarrow M, \quad n \rightarrow \infty . \tag{4.9}
\end{equation*}
$$

Furthermore, (3.2) gives $Q_{n}(s) a^{-n} \rightarrow K(1-F(s)), \quad n \rightarrow \infty$. Applying Lemma 3.2 we find that when $n \rightarrow \infty$,

$$
\begin{gather*}
\sum_{k=0}^{n} m_{k} P_{0}(k) Q_{n-k}(s)=a^{n} \sum_{k=0}^{n} \frac{m_{k} P_{0}(k)}{a^{k}} \frac{Q_{n-k}(s)}{a^{n-k}} \tag{4.10}\\
\sim M K n(1-F(s)) a^{n}
\end{gather*}
$$

Again from (3.5), (3.3) and (2.6) it follows that for $k \rightarrow \infty$ and $n \geq k, 0 \leq$ $a^{-k} P_{0}(k) c_{k}\left(f_{n-k}(s)\right) \leq a^{-k} c_{k}=O(1), \quad n \geq 0$. Moreover, (3.3) and (3.1) immediately yield $\sum_{k=0}^{\infty} Q_{k}^{2}(s) a^{-k}<\infty$. From the last two relations, it is easy to conclude that if $n \rightarrow \infty$,

$$
\begin{equation*}
0 \leq \sum_{k=0}^{n} P_{0}(k) c_{k}\left(f_{n-k}(s)\right) Q_{n-k}^{2}(s) \leq a^{n} \sum_{k=0}^{n} \frac{P_{0}(k) c_{k}}{a^{k}} \frac{Q_{n-k}^{2}}{a^{n-k}}=O\left(a^{n}\right) \tag{4.11}
\end{equation*}
$$

Finally, (4.6)-(4.11) yield that for each fixed $s \in[0,1), n \rightarrow \infty$,

$$
\begin{equation*}
R_{n}(s) \sim M K n(1-F(s)) a^{n} . \tag{4.12}
\end{equation*}
$$

Setting $s=0$ in (4.12) we prove (2.7). For $|s| \leq 1 \mathbf{E}\left\{s^{Z_{n}} \mid Z_{n}>0\right\}=1-R_{n}(s) / R_{n}$. Now,
(2.10) follows from (2.7) and (4.12).

The proof of (2.8) follows by the representation (see (1.4)):

$$
\begin{equation*}
A_{n+1}=m_{0} a^{n+1}+a^{n} \sum_{k=0}^{n} \frac{P_{0}(k) m_{k}}{a^{k}} \tag{4.13}
\end{equation*}
$$

and from (4.9), which yields (see [3], Sect.8.9) $\sum_{k=0}^{n} P_{0}(k) m_{k} a^{-k} \sim M n, n \rightarrow \infty$.
For the proof of (2.9) we will use (1.5). First of all, it is easy to see, that

$$
\begin{equation*}
2 b m_{0} \frac{a^{n+1}\left(a^{n+1}-1\right)}{a(a-1)} \sim \frac{2 b m_{0} a^{n+1}}{a(1-a)}, \quad n \rightarrow \infty . \tag{4.14}
\end{equation*}
$$

We estimate the sum $\sum_{k=0}^{n} P_{0}(k) c_{k} a^{2(n-k)}$, using also (2.6),

$$
\begin{equation*}
\sum_{k=0}^{n} P_{0}(k) c_{k} a^{2(n-k)}=a^{n} \sum_{k=0}^{n} \frac{P_{0}(k) c_{k}}{a^{k}} a^{n-k}=O\left(a^{n}\right), n \rightarrow \infty \tag{4.15}
\end{equation*}
$$

Finally, for the last sum in (1.5) we have the representation

$$
\begin{gathered}
\sum_{k=0}^{n} P_{0}(k) m_{k} \frac{a^{n-k}\left(a^{n-k}-1\right)}{a(a-1)} \\
=\frac{a^{n}}{a(1-a)} \sum_{k=0}^{n} \frac{P_{0}(k) m_{k}}{a^{k}}-\frac{a^{n}}{a(1-a)} \sum_{k=0}^{n} \frac{P_{0}(k) m_{k}}{a^{k}} a^{n-k}=S_{1}(n)-S_{2}(n) .
\end{gathered}
$$

For $S_{1}(n)$, we obtain from (4.9) (see also [3], Sect.8.9), $S_{1}(n) \sim a^{n} /(a(1-a)) M n$. For $S_{2}(n)$, again from (4.9), and Lemma 3.1 we get $S_{2}(n) \sim a^{n} /\left(a(1-a)^{2}\right) M, n \rightarrow \infty$. The last three relations imply

$$
\begin{equation*}
2 b \sum_{k=0}^{n} P_{0}(k) m_{k} \frac{a^{n-k}\left(a^{n-k}-1\right)}{a(a-1)} \sim \frac{2 b M n a^{n}}{a(1-a)}, n \rightarrow \infty . \tag{4.16}
\end{equation*}
$$

Now, combining (4.14)-(4.16) and (1.5) we prove (2.9). The theorem is proved.
Proof of Theorem 2.4. The proof is quite similar to the proof of Theorem 2.3, one just uses (2.11) instead of (2.6) and we omit it.

REFERENCES

[1] K. V. Mitov, V. A. Vatutin, N. M. Yanev. Critical Galton-Watson processes with decreasing state-dependent immigration, Serdica Bul. math. publ. 10 (1984), 12-24, (in Russian). [2] B. A. Sevastyanov. Branching Processes, Mir, Moscow, 1970, (in Russian).
[3] W. Feller. An Introduction to Probability Theory and its Applications, vol. 2, Mir, Moscow, 1984, (in Russian).
[4] J. Foster. A limit theorem for a branching process with state dependent immigration. Ann. Math. Statist. 42 (1971), 1773-1776.
[5] A. G. Pakes. A branching process with a state-dependent immigration component. Adv. Appl. Prob. 3 (1971), 301-314.

Kosto V. Mitov
G. Kochev str., 8, vh. A, apt. 16

5800 Pleven, Bulgaria
210

ДОКРИТИЧЕСКИ РАЗКЛОНЯВАЩИ СЕ ПРОЦЕСИ С НЕЕДНОРОДНА ИМИГРАЦИЯ

Косто В. Митов

Разглеждат се докритически процеси на Галтон-Уотсън с нееднородна имиграция в състоянието нула. Получени са асимптотически формули за първите два факториални момента, когато интензивността на имиграцията клони към нула. Доказани са гранични теореми.

[^0]: ${ }^{*}$ The paper is supported by NFSI-Bulgaria, grant No. MM-704/97

