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SUBCRITICAL BRANCHING PROCESSES WITH NON
HOMOGENEOUS IMMIGRATION"

Kosto V. Mitov

Subcritical Galton—Watson branching processes with non—homogeneous, state-
dependent immigration is considered. It is obtained the asymptotic behaviour of
the first and second factorial moments, when the immigration intensity tends to zero.
The limit theorems are also proved.

1. Model and basic equations. Let on the probability space (£2,.4,P) be given
two independent sets of nonnegative, integer valued random variables (r.v.):
a) X = {X,(i),i = 1,2,...,n = 1,2,...} — a set of independent, identically dis-

[ee]
tributed r.v. with probability generating function (p.g.f.) f(s) = E{sXi(M} = 3 p,.s*,
k=0

s| < 1.
b)Y ={Y,,n=0,1,2,...} — aset of independent r.v. with p.g.f. g,(s) = E{s¥"} =

oo
3 qe(n)s*, |s| < 1.
k=0

~ We define the process Z,,n=0,1,2,... as follows

ZW,
(11) Z() :YE), Zn+1 :ZXnJrl(i)JFI{Zn:O}YnJrl’ n:0,1,2,...
i=1

0
where it is always assumed that > % = 0.
k=1
The process Z,, defined by (1.1) is a modification of the classical Galton-Watson
branching process, which can be described as follows: It starts with Yy > 0 particles
in the 0-th generation and evolves as a Galton-Watson process up to the moment when
Zy,, = 0. Then in the next generation n 4+ 1 Y,;4; > 0 new particles immigrate, and a
new Galton-Watson process starts and so on. If the r.v. Y,,n = 0,1,2,... are non-
identically distributed, Z,, is a non-homogeneous Markov chain with the state space Z .
If gn(s) = g(s), i.e. the distributions of immigrants are equivalent, we obtain the model,
which was introduced and investigated by Foster [4] and Pakes [5]. In this case, Z, is a
homogeneous Markov chain.
[e.e]
Let us denote Py(n) = P{Z, =k}, k=0,1,2,.... Then H,(s) = > Py(n)s" =
k=0
E{s%}, |s| <1 is the p.g.f. of the number of particles existing in the n-th generation.
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We denote R, (s) = 1 — Hy(s), R, = R,(0) = P{Z, > 0}, and fo(s) = s, fi(s) =
f(8), fat1(s) = f(fn(s)), n=2,3,..., are the iterations of the function f(s). Denote
also Qn(s) = 1— fn(s), Qn = Q.(0). It is well-known that (see eg. [2]), that f,(s) is the
p-g.f. of a Galton-Watson process without immigration, starting with one ancestor. For
the factorial moments we will use the following notations: a = f'(1) = E{X,, (1)}, 2b=
£7(1) = B{Xa(0)(Xa(0) = D} o = g,(1) = B{¥a},  ¢0 = g/(1) = E{¥a(Ya — D},
Ay = H;z(l) = E{Zn}7 B, = H;{(l) = E{Zn(Zn - 1)}

The basic tools for the investigation of the process Z,, are the equations for the p.g.f.
obtained in [1]:

(1.2) Ho(s) = go(s),  Hny1(s) = Ha(f(5)) = (1 = gn(f(s)) Hn(0),
(1.3) Hpy1(8) = go(fat1(s)) — zn:(l = gn—k(fi(s))Hn—r(0),
and the equations for the first and second kf;(oztorial moments A,, and By:
(1.4) Apyr = moa™™ + z”: Po(k)mka"*k,
k=0
(1.5) By = coa?™ D 4 2bmo% + ZH:PO(k)cka%nfk)
k=0
n n—k(on—k _ 1
+2ka_OP0(k)mk%,

which can be obtained by differentiating of (1.3) with respect to s and setting s = 1,
using also the known results (see [2])

(1.6) fr)=a"  f(1) =2ba"(a" —1)/(a(a - 1)).

2. Basic conditions and results. To the end of the paper we assume the following
conditions:

(2.1) O<a=f'(1)<1 0<2b=f"(1)<oo, (subcritical case),
(2.2) dy =supm, < o0, ds =supc, < oo,

n n
(2.3) 0<my,—0, ¢ —0, n—oo

The condition that the immigration intensity tends to zero is, in some sense, necessary
and sufficient for lim,,_,», P{Z,, > 0} = 0.

Theorem 2.1. Let the conditions (2.1), (2.2) and (2.3) hold. Then
(2.4) lim P{Z, > 0} = 0.
n—oo

Theorem 2.2. Let the conditions (2.1) and (2.2) hold, ¢, — 0, n — oo and also (2.4)
is satisfied. Then

(2.5) lim E{Y,} =0.
n—oo
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So, the behaviour of a subcritical process with immigration in the state zero, which
intensity tends to zero, relates to the behaviour of the classical Galton-Watson process
without any immigration. The next theorems give some asymptotic results for Z,,, under
the different types of convergence in (2.3).

Theorem 2.3. Assume (2.1), (2.2) and (2.3). If also

(2.6) limmu,a ™™ =M, 0< M <oo, ¢, =0(a"), n— o0,
then, together with n — oo :

(2.7) R, =P{Z, >0} ~ MKna",

(2.8) A, =E{Z,} ~ Mna",

(2.9) B, =E{Z,(Z, — 1)} ~2bMna"/(a(l — a)),

and

(2.10) lim_ E{s?"|Z, > 0} = F(s).

Theorem 2.4. Assume (2.1), (2.2) and (2.3). If also

(2.11) imna_"zM, 0<M<oo, c¢,=o0(a"), n— oo,
then, together wi:lzon — 00

(2.12) R, =P{Z, > 0} ~ (mo + P/a)Ka",

(2.13) A, =E{Z,} ~ (mo + P/a)a",

(2.14) B, =E{Z,(Z, —1)} ~ 2b(mo + P/a)a",

and

(2.15) lim E{s?"|Z, > 0} = F(s).

o0
where P = Y Py(k)mga=" € (0, 00).
k=0

Remark. The function F(s) is the p.g.f. of the conditional limit distribution of the
Galton-Watson process without immigration (see (3.2)).

3. Preliminary results. Under the conditions (2.1) the following well-known
results for subcritical Galton-Watson processes hold (see [2]):

(3.1) Qn~Ka", n— oo,
where K € (0, 00),
(3.2) ILm Qn(s)/Qn=1—-F(s), 0<s<1,

where the p.g.f. F(s) is the unique solution of the functional equation 1 — F'(f(s)) =
a(l—F(s)) and F(0) =0, F(1)=1, F'(1)=K 1,
(3.3) 0< fn(0) < fa(s) <1, s<fuls)T1l, n— oo,
uniformly in 0 < s < 1.
The p.g.f. gn(s), n=0,1,2,... have the following properties:
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For 0 <s<1

(3.4) 1= gu(s) = mn(1 = ) — (ca(s)/2)(1 — )2,
where

(3.5) 0<cn(s)<ecn, cn(s)—cn, st

(3.6) M (1 —8) — (cn/2)(1 — 8)* <1 — gn(s) <myu(1 —s).

The proofs of the above results can be found in [2].
The next lemmas state, for easy references, the well known analytical facts.

Lemma 3.1. If the sequence x, > 0,n = 0,1,2,... converges to 0 < x < 00, and
o0

> yr =y < 00 is the convergent series with positive components, then
k=0

(3.7) lim Zxkyn k= TY.

n—oo

Lemma 3.2.If z, > 0,n = 0,1,2,... and y, > 0,n = 0,1,2,... are such that
lim, yo0o Tn = > 0 and lim, o0 Yy =y > 0, then

(3.8) szyn,k ~TYn, n — oo.
k=0

4. Proofs of the basic results.
Proof of Theorem 2.1. We obtain from (1.3), and (3.4), for s = 0,
1
(4.1) Ryy1 = moQnyr — §Co(fn+1(0)) i+1

Z k)ew(f1r(0)Qn -

Mlh

+kapo )Qn—k —

Now, (3.1) gives
(4.2) moQns1 ~ moKa™ — 0, n— co.
Using also (3.3) and (3.5) we have
(4.3) co(fn+1(0))Qi+1 ~coK?%a®™ -0, n— .
(oo} [ee]
Further, (3.1) yields Y Qr < o0, > Q% < oo. Since 0 < Py(k) < 1 and (2.3), then
k=0 k=0
n
Lemma 3.1 gives > miPo(k)Qn—r — 0, n — oco. Similarly, using also (3.5), we obtain
k=0

(4.4) 0<ZPO Ver (frr(0 ik<ZPO Jer@2 . =0, n— oo,

Finally, (4.1)7(4.4) yield (2.4). The theorem is proved. O

Proof of Theorem 2.2. We use the representation (4.1) again. Under the conditions
of the theorem (4.2), (4.3) and (4.4) hold. Since R,, — 0, n — o0, then from (4.1) we
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obtain

Let us assume that lim SUP,,_,o0 Mn = m > 0. Hence, there exists a subsequence my,,
such that m,, — m >0, k — oco. From Py(k) =1— Ry — 1, k — oo it follows that
My, Po(nk) = m >0, k — oo. Using the last relation and the convergence of the series

o0

> Qr we get
k=0

Nk N 00
> Py()miQu—i = > Po(i)miQuy—j = m Y Qu, >0, k— oo
Jj=0 Jj=no J=0
In the last two sums j takes as values only the indexes of the subsequence. Therefore,

liminfy_ oo Z Po(j)m;Qn,—; > 0, which contradicts to (4.5). The theorem is proved. O
§=0
Proof of Theorem 2.3. Let s € [0,1) be fixed. From (1.3) and (3.4) it follows that

(4.6) Ryi1(s) = moQn1(s) — %CO(an(S))QiH(S)

+kaPO Qn k - _ZPO Ck fn k( ))Qifk(s)

First of all, using (3.2) and (3.1) we obtam

(4.7) MoQni1(s) ~ moK (1 — F(s))a™™, n — oo.
From (3.5), (3.3) we obtain
(45) 0 < colfs1(5)Q241(5) < 0QP 1y ~ K202, n = o0,
Further from Theorem 2.1 and (2.6) it follows that
(4.9) () na "= M, n— oo.
Furthermore, (3.2) gives Qn(s)a™" — K(1 — F(s)), n — oo. Applying Lemma 3.2

we find that when n — oo,
n

(4.10) kapo )Qn—k(s) = nz

k=0
~ MKn(l— F(s))a™.
3.3) and (2.6) it follows that for ¥ — oo and n > k, 0 <
a~*c;, = O(1), n > 0. Moreover, (3.3) and (3.1) immedi-

miPo(k) Qn-r(s)
ak anfk

Again from (3.5), (
a_kPo(k)Ck(OJ:nfk(S)) <

ately yield Q%(s)a‘k < 00. From the last two relations, it is easy to conclude that if

k=0
n — 0o,
n Po(k)ck Q2—k
4.11 <Y Py e 2 <gh) L mEnTh .
( ) 0 Z 0 Ck f k( ))Qn—k(s) >a kzzo ok an—k O(a’ )
Finally, (4.6)7(4.11) yield that for each fixed s € [0,1), n — oo,
(4.12) R, (s) ~ MKn(1— F(s))a™.

Setting s = 0 in (4.12) we prove (2.7). For |s| < 1 E{s?"|Z, > 0} = 1— R,(s)/R,. Now,
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(2.10) follows from (2.7) and (4.12).
The proof of (2.8) follows by the representation (see (1.4)):

"\ Py(k)m
(4.13) A1 =moa™ +a" > %
k=0

n
and from (4.9), which yields (see [3], Sect.8.9) > Py(k)mra= ~ Mn, n — .
k=0

For the proof of (2.9) we will use (1.5). First of all, it is easy to see, that
a"t(a™*tt —1)  2bmga"t!

4.14 2b ~ .
(4.14) o ala —1) a(l—a)’ e
n
We estimate the sum > Py(k)crpa®" ") using also (2.6),
k=0
(4.15) ZPO(k)ckaQ("_k) =a" Z %a”_k =0(a"), n — oc.
k=0 k=0

Finally, for the last sum in (1.5) we have the representation

n . anfk(anfk o 1)
];)Po(k) ¥ ala —1)

n

a Z Po(k)mk a Z Po(k)mk anfk _ Sl(n) _ 52(n)

" a(l-a) —  a ~a(l —a) —  a

For Si(n), we obtain from (4.9) (see also [3], Sect.8.9), Si(n) ~ a™/(a(l — a))Mn.
For S3(n), again from (4.9), and Lemma 3.1 we get Sa(n) ~ a™/(a(l —a)?)M, n — oco.
The last three relations imply

(4.16) 2bzn: Po(k)my 2
k=0

n

n n

nk(gn=kF —1)  2bMna"
~ n

ala —1) a(l —a)’
Now, combining (4.14)—(4.16) and (1.5) we prove (2.9). The theorem is proved. O

Proof of Theorem 2.4. The proof is quite similar to the proof of Theorem 2.3, one
just uses (2.11) instead of (2.6) and we omit it. [

— 0Q.
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JTOKPUTNYECKU PA3KJIOHSIBAIIIN CE IIPOIIECH C
HEEJTHOPOJIHA MMUTPAIINS

Kocro B. Muros

Pazriexxar ce moxkpuTrdecku mporecu Ha ['aJToH-YOTCbhbH ¢ HEeTHOPOIHA UMHUI'Pa-
[Usl B CbCTOSIHUETO HyJsa. [losiydeHu ca acMMITOTHYECKM (POPMYJH 33 MbPBUTE JIBA
dakTOpUaTHA MOMEHTAa, KOrATO WHTEH3MBHOCTTA HA UMHUTPAIUASITA, KJIOHU K'bM HYJIA.
JlokazaHn ca rpaHUYHU TEOPEMHU.
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