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SUBCRITICAL BRANCHING PROCESSES WITH NON

HOMOGENEOUS IMMIGRATION
*

Kosto V. Mitov

Subcritical Galton–Watson branching processes with non–homogeneous, state-
dependent immigration is considered. It is obtained the asymptotic behaviour of
the first and second factorial moments, when the immigration intensity tends to zero.
The limit theorems are also proved.

1. Model and basic equations. Let on the probability space (Ω,A,P) be given
two independent sets of nonnegative, integer valued random variables (r.v.):

a) X = {Xn(i), i = 1, 2, . . . , n = 1, 2, . . .} – a set of independent, identically dis-

tributed r.v. with probability generating function (p.g.f.) f(s) = E{sXi(n)} =
∞∑
k=0

pks
k,

|s| ≤ 1.
b) Y = {Yn, n = 0, 1, 2, . . .} – a set of independent r.v. with p.g.f. gn(s) = E{sYn} =

∞∑
k=0

qk(n)s
k, |s| ≤ 1.

We define the process Zn, n = 0, 1, 2, . . . as follows

Z0 = Y0, Zn+1 =

Zn∑

i=1

Xn+1(i) + I{Zn=0}Yn+1, n = 0, 1, 2, . . .(1.1)

where it is always assumed that
0∑

k=1

∗ = 0.

The process Zn defined by (1.1) is a modification of the classical Galton-Watson
branching process, which can be described as follows: It starts with Y0 > 0 particles
in the 0-th generation and evolves as a Galton-Watson process up to the moment when
Zn = 0. Then in the next generation n + 1 Yn+1 > 0 new particles immigrate, and a
new Galton-Watson process starts and so on. If the r.v. Yn, n = 0, 1, 2, . . . are non-
identically distributed, Zn is a non-homogeneous Markov chain with the state space Z+.
If gn(s) ≡ g(s), i.e. the distributions of immigrants are equivalent, we obtain the model,
which was introduced and investigated by Foster [4] and Pakes [5]. In this case, Zn is a
homogeneous Markov chain.

Let us denote Pk(n) = P{Zn = k}, k = 0, 1, 2, . . . . Then Hn(s) =
∞∑
k=0

Pk(n)s
n =

E{sZn}, |s| ≤ 1 is the p.g.f. of the number of particles existing in the n-th generation.
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We denote Rn(s) = 1 − Hn(s), Rn = Rn(0) = P{Zn > 0}, and f0(s) = s, f1(s) =
f(s), fn+1(s) = f(fn(s)), n = 2, 3, . . . , are the iterations of the function f(s). Denote
also Qn(s) = 1−fn(s), Qn = Qn(0). It is well-known that (see eg. [2]), that fn(s) is the
p.g.f. of a Galton-Watson process without immigration, starting with one ancestor. For
the factorial moments we will use the following notations: a = f ′(1) = E{Xn(i)}, 2b =
f ′′(1) = E{Xn(i)(Xn(i) − 1)}, mn = g′n(1) = E{Yn}, cn = g′′n(1) = E{Yn(Yn − 1)},
An = H ′

n(1) = E{Zn}, Bn = H ′′
n(1) = E{Zn(Zn − 1)}.

The basic tools for the investigation of the process Zn are the equations for the p.g.f.
obtained in [1]:

H0(s) = g0(s), Hn+1(s) = Hn(f(s))− (1− gn(f(s))Hn(0),(1.2)

Hn+1(s) = g0(fn+1(s))−

n∑

k=0

(1− gn−k(fk(s))Hn−k(0),(1.3)

and the equations for the first and second factorial moments An and Bn:

An+1 = m0a
n+1 +

n∑

k=0

P0(k)mka
n−k,(1.4)

Bn+1 = c0a
2(n+1) + 2bm0

an+1(an+1 − 1)

a(a− 1)
+

n∑

k=0

P0(k)cka
2(n−k)(1.5)

+2b

n∑

k=0

P0(k)mk

an−k(an−k − 1)

a(a− 1)
,

which can be obtained by differentiating of (1.3) with respect to s and setting s = 1,
using also the known results (see [2])

f ′
n(1) = an; f ′′

n (1) = 2ban(an − 1)/(a(a− 1)).(1.6)

2. Basic conditions and results. To the end of the paper we assume the following
conditions:

0 < a = f ′(1) < 1 0 < 2b = f ′′(1) < ∞, (subcritical case),(2.1)

d1 = sup
n

mn < ∞, d2 = sup
n

cn < ∞,(2.2)

0 < mn → 0, cn → 0, n → ∞.(2.3)

The condition that the immigration intensity tends to zero is, in some sense, necessary
and sufficient for limn→∞ P{Zn > 0} = 0.

Theorem 2.1.Let the conditions (2.1), (2.2) and (2.3) hold. Then

lim
n→∞

P{Zn > 0} = 0.(2.4)

Theorem 2.2.Let the conditions (2.1) and (2.2) hold, cn → 0, n → ∞ and also (2.4)
is satisfied. Then

lim
n→∞

E{Yn} = 0.(2.5)
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So, the behaviour of a subcritical process with immigration in the state zero, which
intensity tends to zero, relates to the behaviour of the classical Galton-Watson process
without any immigration. The next theorems give some asymptotic results for Zn, under
the different types of convergence in (2.3).

Theorem 2.3.Assume (2.1), (2.2) and (2.3). If also

limmna
−n = M, 0 < M < ∞, cn = O(an), n → ∞,(2.6)

then, together with n → ∞ :

Rn = P{Zn > 0} ∼ MKnan,(2.7)

An = E{Zn} ∼ Mnan,(2.8)

Bn = E{Zn(Zn − 1)} ∼ 2bMnan/(a(1− a)),(2.9)

and

lim
n→∞

E{sZn |Zn > 0} = F (s).(2.10)

Theorem 2.4.Assume (2.1), (2.2) and (2.3). If also
∞∑

k=0

mna
−n = M, 0 < M < ∞, cn = o(an), n → ∞,(2.11)

then, together with n → ∞:

Rn = P{Zn > 0} ∼ (m0 + P/a)Kan,(2.12)

An = E{Zn} ∼ (m0 + P/a)an,(2.13)

Bn = E{Zn(Zn − 1)} ∼ 2b(m0 + P/a)an,(2.14)

and

lim
n→∞

E{sZn |Zn > 0} = F (s).(2.15)

where P ≡
∞∑
k=0

P0(k)mka
−k ∈ (0,∞).

Remark. The function F (s) is the p.g.f. of the conditional limit distribution of the
Galton-Watson process without immigration (see (3.2)).

3. Preliminary results. Under the conditions (2.1) the following well-known
results for subcritical Galton-Watson processes hold (see [2]):

Qn ∼ Kan, n → ∞,(3.1)

where K ∈ (0,∞),

lim
n→∞

Qn(s)/Qn = 1− F (s), 0 ≤ s < 1,(3.2)

where the p.g.f. F (s) is the unique solution of the functional equation 1 − F (f(s)) =
a(1− F (s)) and F (0) = 0, F (1) = 1, F ′(1) = K−1,

0 < fn(0) ≤ fn(s) ≤ 1, s ≤ fn(s) ↑ 1, n → ∞,(3.3)

uniformly in 0 ≤ s < 1.
The p.g.f. gn(s), n = 0, 1, 2, . . . have the following properties:
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For 0 ≤ s ≤ 1

1− gn(s) = mn(1− s)− (cn(s)/2)(1− s)2,(3.4)

where

0 ≤ cn(s) ≤ cn, cn(s) → cn, s ↑ 1;(3.5)

mn(1− s)− (cn/2)(1− s)2 ≤ 1− gn(s) ≤ mn(1 − s).(3.6)

The proofs of the above results can be found in [2].

The next lemmas state, for easy references, the well known analytical facts.

Lemma 3.1. If the sequence xn ≥ 0, n = 0, 1, 2, . . . converges to 0 ≤ x < ∞, and
∞∑
k=0

yk = y < ∞ is the convergent series with positive components, then

lim
n→∞

n∑

k=0

xkyn−k = xy.(3.7)

Lemma 3.2. If xn ≥ 0, n = 0, 1, 2, . . . and yn ≥ 0, n = 0, 1, 2, . . . are such that

limn→∞ xn = x > 0 and limn→∞ yn = y > 0, then
n∑

k=0

xkyn−k ∼ xyn, n → ∞.(3.8)

4. Proofs of the basic results.

Proof of Theorem 2.1. We obtain from (1.3), and (3.4), for s = 0,

Rn+1 = m0Qn+1 −
1

2
c0(fn+1(0))Q

2
n+1(4.1)

+

n∑

k=0

mkP0(k)Qn−k −
1

2

n∑

k=0

P0(k)ck(fn−k(0))Q
2
n−k.

Now, (3.1) gives

m0Qn+1 ∼ m0Kan → 0, n → ∞.(4.2)

Using also (3.3) and (3.5) we have

c0(fn+1(0))Q
2
n+1 ∼ c0K

2a2n → 0, n → ∞.(4.3)

Further, (3.1) yields
∞∑
k=0

Qk < ∞,
∞∑
k=0

Q2
k < ∞. Since 0 ≤ P0(k) ≤ 1 and (2.3), then

Lemma 3.1 gives
n∑

k=0

mkP0(k)Qn−k → 0, n → ∞. Similarly, using also (3.5), we obtain

0 ≤
n∑

k=0

P0(k)ck(fn−k(0))Q
2
n−k ≤

n∑

k=0

P0(k)ckQ
2
n−k → 0, n → ∞.(4.4)

Finally, (4.1)–(4.4) yield (2.4). The theorem is proved. �

Proof of Theorem 2.2. We use the representation (4.1) again. Under the conditions
of the theorem (4.2), (4.3) and (4.4) hold. Since Rn → 0, n → ∞, then from (4.1) we
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obtain
n∑

k=0

mkP0(k)Qn−k → 0, n → ∞.(4.5)

Let us assume that lim supn→∞ mn = m > 0. Hence, there exists a subsequence mnk

such that mnk
→ m > 0, k → ∞. From P0(k) = 1 − Rk → 1, k → ∞ it follows that

mnk
P0(nk) → m > 0, k → ∞. Using the last relation and the convergence of the series

∞∑
k=0

Qk we get

nk∑

j=0

P0(j)mjQnk−j ≥

nk∑

j=n0

P0(j)mjQnk−j → m

∞∑

j=0

Qnj
> 0, k → ∞.

In the last two sums j takes as values only the indexes of the subsequence. Therefore,

lim infk→∞

nk∑
j=0

P0(j)mjQnk−j > 0, which contradicts to (4.5). The theorem is proved. �

Proof of Theorem 2.3. Let s ∈ [0, 1) be fixed. From (1.3) and (3.4) it follows that

Rn+1(s) = m0Qn+1(s)−
1

2
c0(fn+1(s))Q

2
n+1(s)(4.6)

+

n∑

k=0

mkP0(k)Qn−k(s)−
1

2

n∑

k=0

P0(k)ck(fn−k(s))Q
2
n−k(s).

First of all, using (3.2) and (3.1) we obtain

m0Qn+1(s) ∼ m0K(1− F (s))an+1, n → ∞.(4.7)

From (3.5), (3.3) we obtain

0 ≤ c0(fn+1(s))Q
2
n+1(s) ≤ c0Q

2
n+1 ∼ c0K

2a2n, n → ∞.(4.8)

Further from Theorem 2.1 and (2.6) it follows that

P0(n)mna
−n → M, n → ∞.(4.9)

Furthermore, (3.2) gives Qn(s)a
−n → K(1 − F (s)), n → ∞. Applying Lemma 3.2

we find that when n → ∞,
n∑

k=0

mkP0(k)Qn−k(s) = an
n∑

k=0

mkP0(k)

ak
Qn−k(s)

an−k
(4.10)

∼ MKn(1− F (s))an.

Again from (3.5), (3.3) and (2.6) it follows that for k → ∞ and n ≥ k, 0 ≤
a−kP0(k)ck(fn−k(s)) ≤ a−kck = O(1), n ≥ 0. Moreover, (3.3) and (3.1) immedi-

ately yield
∞∑
k=0

Q2
k(s)a

−k < ∞. From the last two relations, it is easy to conclude that if

n → ∞,

0 ≤

n∑

k=0

P0(k)ck(fn−k(s))Q
2
n−k(s) ≤ an

n∑

k=0

P0(k)ck
ak

Q2
n−k

an−k
= O(an).(4.11)

Finally, (4.6)–(4.11) yield that for each fixed s ∈ [0, 1), n → ∞,

Rn(s) ∼ MKn(1− F (s))an.(4.12)

Setting s = 0 in (4.12) we prove (2.7). For |s| ≤ 1 E{sZn |Zn > 0} = 1−Rn(s)/Rn. Now,
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(2.10) follows from (2.7) and (4.12).
The proof of (2.8) follows by the representation (see (1.4)):

An+1 = m0a
n+1 + an

n∑

k=0

P0(k)mk

ak
,(4.13)

and from (4.9), which yields (see [3], Sect.8.9)
n∑

k=0

P0(k)mka
−k ∼ Mn, n → ∞.

For the proof of (2.9) we will use (1.5). First of all, it is easy to see, that

2bm0
an+1(an+1 − 1)

a(a− 1)
∼

2bm0a
n+1

a(1− a)
, n → ∞.(4.14)

We estimate the sum
n∑

k=0

P0(k)cka
2(n−k), using also (2.6),

n∑

k=0

P0(k)cka
2(n−k) = an

n∑

k=0

P0(k)ck
ak

an−k = O(an), n → ∞.(4.15)

Finally, for the last sum in (1.5) we have the representation
n∑

k=0

P0(k)mk

an−k(an−k − 1)

a(a− 1)

=
an

a(1− a)

n∑

k=0

P0(k)mk

ak
−

an

a(1− a)

n∑

k=0

P0(k)mk

ak
an−k = S1(n)− S2(n).

For S1(n), we obtain from (4.9) (see also [3], Sect.8.9), S1(n) ∼ an/(a(1 − a))Mn.
For S2(n), again from (4.9), and Lemma 3.1 we get S2(n) ∼ an/(a(1− a)2)M, n → ∞.
The last three relations imply

2b

n∑

k=0

P0(k)mk

an−k(an−k − 1)

a(a− 1)
∼

2bMnan

a(1− a)
, n → ∞.(4.16)

Now, combining (4.14)–(4.16) and (1.5) we prove (2.9). The theorem is proved. �

Proof of Theorem 2.4. The proof is quite similar to the proof of Theorem 2.3, one
just uses (2.11) instead of (2.6) and we omit it. �
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ДОКРИТИЧЕСКИ РАЗКЛОНЯВАЩИ СЕ ПРОЦЕСИ С

НЕЕДНОРОДНА ИМИГРАЦИЯ

Косто В. Митов

Разглеждат се докритически процеси на Галтон-Уотсън с нееднородна имигра-

ция в състоянието нула. Получени са асимптотически формули за първите два

факториални момента, когато интензивността на имиграцията клони към нула.

Доказани са гранични теореми.
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