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We study the existence of homoclinic solutions of the extended Fisher–Kolmogorov
equation with cubic nonlinearity and variable coefficients. An existence result is
proved, using the mountain-pass theorem and the concentration-compactness princi-
ple.

1. Introduction. In this paper we study the existence of homoclinic solutions of

the fourth-order equations

uiv + pu′′ + a (x) u− b (x) u2 − c (x) u3 = 0, x ∈ R,(1)

where u (x) is unknown function, p is a constant, a (x) , b (x) and c (x) are continuous

and bounded functions on R. The equation (1), known as stationary Fisher–Kolmogorov

equation, appears in several branches of Physics. The problem of finding a solution,

which is homoclinic to the origin (i.e. a nontrivial function u (x) such that u (x) → 0

as |x| → ∞) is usually related to the existence of solitary waves or to the existence of

stationary solutions with finite energy, namely solutions of the Sobolev space H2 (R) .

The search for homoclinic and heteroclinic solutions is a classical problem, originating

from the work of Poincaré, which has been studied from several points of view. Existence

of homoclinic solutions can be obtained by analyzing the intersection properties of the

stable and unstable manifolds of the fixed points. Let us recall that Devaney [5] proved

that an autonomous Hamiltonian system in dimension 4, with homoclinic orbit to a

saddle-focus fixed point (i.e. the linearized system at the fixed point has the eigenvalues

± (α± iω), where α, ω > 0) is chaotic if the homoclinic orbit is the transverse intersection

of the stable and unstable manifolds. The verification of the transversality for specific

systems such as (1) is a difficult task.

The variational method for the existence of homoclinic and heteroclinic solutions of

Fisher–Kolmogorov equation was applied by Amick & Toland [1], Buffoni [3], Peletier,

Troy and Van der Vorst [6].

Since the equation (1) has a variational structure, the homoclinic solutions are critical

points of the functional on H2 (R)

I (u) =

∫

R

(

1

2

(

u′′2 − pu′2 + a (x)u2
)

− 1

3
b (x)u3 − 1

4
c (x) u4

)

dx.(2)
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We prove the following existence result using the mountain-pass theorem of Brezis &

Nirenberg [2] and the concentration-compactness principle.

Theorem 1. Let a (x) , b (x) and c (x) be continuous 1-periodic functions and there

exist positive constants a1, a2, b, k1 and k2 such that

0 < a1 ≤ a (x) ≤ a2, |b (x)| ≤ b, 0 < k1 ≤ c (x) ≤ k2

and p < 2
√
a1. Then there exists a homoclinic solution u ∈ H of the equation (1) which

is a critical point of the functional (2).

In the case of constant coefficients a (x) = b (x) = 1 and c (x) = 0 for p ≤ −2 Amick

& Toland [1] have proved the existence of homoclinic solution of (1). Their result is

extended by Buffoni [3] for p < 2 applying mountain-pass theorem of Brezis–Nirenberg

[2] and concentration-compactness principle. This idea has been developed in Coti–Zelati,

Ekeland and Séré [4] for convex Hamiltonian systems.

2. Main result. We prove the existence of homoclinic solution of (1) in the space

H2 (R) using variational method under some boundedness conditions on the coefficients

p, a (x) , b (x) and c (x). Assume that:

a (x) , b (x) and c (x) are continuous 1-periodic functions,(3)

such that there are positive constants a1, a2, b, k1 and k2 verifying

0 < a1 ≤ a (x) ≤ a2, |b (x)| ≤ b, 0 < k1 ≤ c (x) ≤ k2(4)

and

p < 2
√
a1.(5)

By assumption (4) it follows that the functional I : H2(R)→ R is Fréchet-differentiable

on H2 (R) and its Fréchet-derivative is given by

〈I ′ (u) , v〉 =
∫

R

(

u′′v′′ − pu′v′ + a (x)uv − b (x) u2v − c (x) u3v
)

dx

for all v ∈ H2 (R) . The critical point w 6= 0, w ∈ H2 (R) of the functional I is a nontrivial

homoclinic solution of (1). Let ‖u‖2 =
∫

R

(

u′′2 + u′2 + u2
)

dx be the norm of the Sobolev

space H := H2 (R) .

Lemma 1. Let a (x) and p satisfy assumptions (4) and (5). Then there exists a

constant c1 > 0 such that
∫

R

(

u′′2 − pu′2 + a (x)u2
)

dx ≥ c1 ‖u‖2 .(6)

Proof. If p < 0 it is clear that (6) is satisfied with c1 = min (−p, a1, 1) . Let us

suppose

0 ≤ p < 2
√
a1.(7)
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Let û (ξ) be the Fourier transform of u (x) ∈ H2 (R) . Suppose that k ∈ (0, 3) is a constant

such that

(p+ 1) ξ2 − a1 + 1 ≤ k

3

(

1 + ξ2 + ξ4
)

, ∀ξ ∈ R.(8)

By Parseval’s identity we obtain (6) with c1 = 1− k
3 > 0 as follows

∫

R

(

u′′2 − pu′2 + a (x)u2
)

dx ≥
∫

R

(

u′′2 − pu′2 + a1u
2
)

dx

=

∫

R

(

ξ4 − pξ2 + a1
)

|û|2 (ξ) dξ

=

∫

R

(

ξ4 + ξ2 + 1− (p+ 1) ξ2 + a1 − 1
)

|û|2 (ξ) dξ

≥
(

1− k

3

)
∫

R

(

ξ4 + ξ2 + 1
)

|û|2 (ξ) dξ

=

(

1− k

3

)

‖u‖2 .

The inequality (8) is equivalent to

0 ≤ ξ4 +

(

1− 3 (p+ 1)

k

)

ξ2 +

(

1 +
3 (a1 − 1)

k

)

, ∀ξ ∈ R.

The last inequality is satisfied provided that
(

1− 3 (p+ 1)

k

)2

− 4

(

1 +
3 (a1 − 1)

k

)

≤ 0

or

k2 + 2k (p+ 2a1 − 1)− 3 (p+ 1)
2 ≥ 0.

Since 0 < k < 3 we have

3 > k ≥ 1− p− 2a1 +

√

(p+ 2a1 − 1)
2
+ 3 (p+ 1)

2
=: k3.

The last inequality implies p2 < 4a1. Since we suppose p ≥ 0 then we obtain (7).

Conversely if (7) is satisfied, then we can choose k ∈ [k3, 3) such that (6) holds with

c1 = 1− k

3
. �

In the following, cj denote positive constants. By the Sobolev embedding theorem

H1 (R) ⊂ Lp (R) , 2 ≤ p <∞.

Let c2 and c3 be constants such that
∫

R

|u (x)|3 dx ≤ c2 ‖u‖3H1(R) ,(9)

∫

R

u4 (x) dx ≤ c3 ‖u‖4H1(R) .(10)

The functional I satisfies the geometric conditions of the mountain-pass theorem under

assumptions (4) and (5) .

Lemma 2.Let assumptions (4) and (5) hold. Then the functional I ∈ C1 (H) satisfies

conditions

228



(1) There exists ρ > 0 such that I (u) > 0 if ‖u‖ = ρ.

(2) There exists e ∈ H such that ‖e‖ > ρ and I (e) < 0.

Proof. (1) From Lemma 1 (9) and (10) we have

I (u) ≥ 1

2
c1 ‖u‖2 −

1

3
b

∫

R

|u|3 dx− 1

4
k2

∫

R

u4dx

≥ 1

2
c1 ‖u‖2 −

1

3
bc2 ‖u‖3 −

1

4
k2c3 ‖u‖4

= ‖u‖2
(

c4 − c5 ‖u‖ − c6 ‖u‖2
)

> 0

for sufficiently small ‖u‖ = ρ.

(2) Let us take ū ∈ H, ū > 0 on R. For λ > 0 we have

λ−2I (λū) =
1

2

∫

R

(

ū′′2 − pū′2 + a (x) ū2
)

dx− λ

3

∫

R

b (x) ū3dx− λ2

4

∫

R

c (x) ū4dx

≤ 1

2

∫

R

(

ū′′2 − pū′2 + a (x) ū2
)

dx+
λ

3
b

∫

R

ū3dx− λ2

4
k1

∫

R

ū4dx

→ −∞
as λ→ +∞. Hence there exists e = λū such that I (e) < 0. �

Proof of Theorem 1. By Lemma 2 and mountain-pass theorem of Brezis & Niren-

berg [2], Theorem 1, there exists a sequence (un)n in H such that

I (un)→ c > 0 and ‖I ′ (un)‖H∗ → 0,(11)

where

c = inf
γ∈Γ

max
0≤t≤1

I (γ (t)) ,

Γ = {γ ∈ C ([0, 1] , H) : γ (0) = 0, γ (1) = e} .
The functional I does not satisfy the Palais–Smale condition. For instance if u0 (·) 6= 0 is

a critical point of I then u0 (·+ j) , j ∈ Z is also a critical point of I but the sequence

(u0 (·+ j))j has not any convergent subsequence in H .

We prove that the sequense (un)n is bounded in H . Indeed we have

1

6
c1 ‖un‖2 ≤ 1

6

∫

R

(

u′′2
n − pu′2

n + a (x)u2
n

)

dx

= I (un)−
1

3
〈I ′ (un) , un〉 −

1

12

∫

R

c (x) u4
ndx

≤ I (un) +
1

3
‖I ′ (un)‖∗ ‖un‖ .

Suppose that (un)n is unbounded sequence. By the last inequality and (11) we have

0 <
1

6
c1 ≤

I (un)

‖un‖2
+

1

3

‖I ′ (un)‖∗
‖un‖

→ 0,

which leads to a contradiction. Hence the sequence (un)n is bounded in H

‖un‖ ≤ c7.(12)
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Therefore we have

|〈I ′ (un) , un〉| → 0

and

0 < c←− I (un)−
1

2
〈I ′ (un) , un〉

=
1

6

∫

R

b (x)u3
ndx+

1

4

∫

R

c (x) u4
ndx

≤ 1

4

∫

R

(

b |un|3 + k2u
4
n

)

dx.

Hence there exist constants c8 and c9 such that

0 < c8 ≤
∫

R

(

u4
n + |un|3

)

dx ≤ c9.(13)

Denote un by u for simplicity. From the Sobolev inequality

‖u‖C[j,j+1] ≤ 2 ‖u‖H1(j,j+1) , j ∈ Z,

(12) and (13) we have

c8 ≤
∫

R

(

u4 + |u|3
)

dx =
∑

j

∫ j+1

j

(

u4 + |u|3
)

dx

=
∑

j

(

‖u‖4L4(j,j+1) + ‖u‖
3
L3(j,j+1)

)

≤ sup
j

max
(

‖u‖2L4(j,j+1) , ‖u‖L3(j,j+1)

)

∑

j

(

‖u‖2L4(j,j+1) + ‖u‖
2
L3(j,j+1)

)

≤ 8 sup
j

max
(

‖u‖2L4(j,j+1) , ‖u‖L3(j,j+1)

)

∑

j

‖u‖2H1(j,j+1)

= 8 sup
j

max
(

‖u‖2L4(j,j+1) , ‖u‖L3(j,j+1)

)

‖u‖2H1(R)

≤ 8c27 sup
j

max
(

‖u‖2L4(j,j+1) , ‖u‖L3(j,j+1)

)

.

Therefore

sup
j

max
(

‖u‖2L4(j,j+1) , ‖u‖L3(j,j+1)

)

≥ c8

8c27
=: c10

and

sup
j

‖u‖L4(j,j+1) ≥ min (c10, 1,
√
c10) =: c11.

Then

inf
n

sup
j∈Z

∫ j+1

j

u4
ndx = inf

n
sup
j∈Z

∫ 1

0

u4
n (x+ j) dx ≥ c411 > 0.(14)

Now we can apply the concentration-compactness argument, cf. [4]. By (14) we can
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choose a sequence (jn)n such that

lim inf
n→∞

∫ 1

0

u4
n (x+ jn) dx > 0.

Let us define vn (·) = un (·+ jn) ∈ H. We have

‖vn‖ = ‖un‖ ≤ c7.

Going if necessary to a subsequence, we can assume that

vn ⇀ v in H2 (R) ,(15)

vn → v in L2
loc (R) ,(16)

vn → v in Cloc (R) ,(17)

vn → v a.e. on R.(18)

By (14) and (17) it follows that v 6= 0. Since the coefficients a (x) , b (x) and c (x) are

assumed to be 1-periodic we have

I (un) = I (vn)

and for w ∈ H

|〈I ′ (vn) , w (·)〉| = |〈I ′ (un) , w (· − jn)〉|
≤ ‖I ′ (un)‖∗ ‖w (· − jn)‖
= ‖I ′ (un)‖∗ ‖w‖ → 0.

Hence I ′ (vn)→ 0 in H∗. By (15) and (17) it follows that I ′ (v) = 0 and therefore v ∈ H

is a nontrivial homoclinic solution of the equation (1). �
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ХОМОКЛИНИЧНИ РЕШЕНИЯ НА ОБОБЩЕНИ УРАВНЕНИЯ НА

ФИШЕР–КОЛМОГОРОВ

Степан Агоп Терзиян, Юлия Ванчева Чапарова

Доказана е теорема за съществуване на хомоклинични решения на уравнения

на Фишер–Колмогоров с кубични нелинейности и променливи коефициенти. До-

казателството е основано на теоремата за хребета и метода на концентрираната

компактност.
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