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The so called 3-satisfiability problem takes an important place in the theory of NP-
completeness of problems and algorithms. This work is a continuation of a previous
one, where conjunctive normal forms of the zero function namely forms, such that any
disjunct of which has no more than three literals (3-CNForms) have been considered
and classified. Here we shall deduce some necessary and some sufficient conditions
which determine whether given sets of 3-CNForms are or are not forms of the zero
function. These conditions are polynomial-time verifiable. Some estimations of the
number of these forms are also given.

1. Introduction and preliminary results. Each function from the set
Fy = {flf : {0,1}™ — {0,1}} is called a Boolean function of n independent vari-
ables 21, ¥, ..., 2, and it is denoted f(x1,22,...,%,). The union Fo = Ff UFFU...U
F3 U. .. denotes the set of all Boolean functions. The function fo(z1,22,...,2y), where
fola,ag,...,a,) = 0 for any true assignment (a1,as,...,a,) from the n-dimensional
Boolean cube {0,1}" (for n = 1,2,...) is called a zero function and denoted 0. The fa-
mous theorem of George Bool proves that for any function f € F; there exists a formula
over the set {Z,x1 V z3,2122}.

The function f(z,d) = ¢ is defined by ¢ = { v Zf d=0

x ifd=1
\/aci2 V...V xf: where x;; # x;, for j # k is called a disjunct of length m. We consider
the zero function as a disjunct of length 0. The formula Dy A Dy A --- A D,., where
D1, Do,...,D, are different disjuncts is called a conjunctive normal form (CNForm) of
the corresponding function. The Bool’s theorem implies that at least one CNForm exists
for any Boolean function different from 1. The true assignment (a1,a2,...,a,) € {0,1}"
satisfies a formula ¢ of the Boolean function f,, of n variables if f,(a1,az,...,a,) = 1.

A problem of recognition from the theory of Boolean functions has the honor to
be the first member of the whole class of interesting problems for whose solving no
good algorithms are known — the so called NP-complete problems [1]. This problem
is called CNForm Satisfiability (or simply Satisfiability) and it is formulated so: ”A
Boolean function in a conjunctive normal form ¢ is given. Is there a true assignment
that satisfies ¢?” The basic theorem of Cook in [1] states that the Satisfiability is NP-
complete problem. When each of the disjuncts in the CNForm Dy A Dy A -+ A D, has
a length = 3, this form is called a 3-CNForm. It is also proved that the Satisfiability
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problem is reducible in polynomial time to the following problem, called a 3-Satisfiability:
” A Boolean function f, in a 3-CNForm ¢ is given. Is there a true assignment that satisfies
©?”. That is why we shall consider only 3-CNForms. The question of the 3-Satisfiability
problem can be formulated as following: ” Whether the 3-CNForm ¢ is a form of the zero
function?”.

In [2] we started to examine the 3-CNForms of 0 with up to 3 essential variables under
some ”equivalencies” and gave a full classification under these equivalencies. The basic
definitions and assertions are:

Definition. The 3-CNForm ' of 0 is pn-equivalent to the formula ¢ of 0 if it is
obtained from ¢ by a permutation and/or negations of variables.

Definition. Let D1 A Dy A--- A D, be a 3-CNForm ¢ of 0. For any j € N,1<j < T
the form Dy A -+-ADj_1 A Dji1 A=+ A Dy is called a cut of Dj in ¢. The form ¢ of 0
is called cut-irreducible if any cut in ¢ makes it a 3-CNForm which is not a form of 0.

Definition. Let Dy ADy A--- A D, be a 3-CNForm of 0. IfD; = x?ll Vx?j AV \/ac;,
2<s<n andD} =7 V...Vx;::ll Vx?:rll V...Vx?j for some k, 1 < k < s, then
DiA---ANDj_1 A D; ANDji1 N+ AND, is called a puncture of the variable :c‘;: in D;.
The form ¢ of 0 is called puncture-irreducible if any puncture in @ reduces it to CNForm
which is not cut-irreducible.

Definition. The 3-CNForm ¢ of 0 is called irreducible if it is cut-irreducible and it
s puncture-irreducible.

For any function f € F3 we shall denote
Zr ={(a1,a2,...,an)|(a1,az,...,a,) € {0,1}", f(a1,a2,...,a,) = 0}.
Lemma 1.1.If the disjunct D = 27" V 2> V...V 27", 0 < k < n, is a Boolean

function of n variables, then Zp is a (n — k)-dimensional subcube of the n-dimensional
cube {0,1}" and so |Zp| = 2"7F.

Lemma 1.2. Let the disjuncts D1 and Do be Boolean functions of n variables. If
there is x; in Dy and T; in D, then Zp, N Zp, = (.

Lemma 1.3. If the disjuncts D1, Dy, ..., Dy of length 1 are Boolean functions of n
variables, different disjuncts comprise different variables and ¢ = D1 AN Do A -+- A Dy,
then |Z,| = 2" —2n=k,

Lemma 1.4. Let the disjuncts D1 = :c?ll V...V :cf: \Y, :c?i V...V m?;’ and Dy =
:c?ll V...V :cfk" Vol V...V :c%q are Boolean functions of n wvariables, 0 < k < n,
0<p<n—k 0<g<n—k—pandzxj #xnm, fors#t. Then:

1) |ZD1 N ZD2| = gn=(k+p+a)
2) | Zyy| = 20~ (+r+0) (20 421 — 1)

Theorem 1.1. The irreducible 3-CNForms D1 N Dy A -+ A D, off) with up to 8
variables are:

1) for r = 1: the disjunct of length 0 or 0;

2) forr=2: x;%;;

3) forr =3: xyx; (% V IT,);

4) forr =4:
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— zx25 (T VT V Tk);

— :L'Zl‘j(ﬂ_:‘z \Y l‘k)(ﬂ_'}j \Y :Z'k),'

— (@ V) (@i V) (& V) (T V )

5) forr =5:

— zi(x; Var)(z; V) (T Var) (T VTV Tg);

- (QL'Z \/l‘j)(l'z \Y I’k)(fz \Y I'])(IZ'% \Y I'k)(i'j \Y i’k);

— (s Vaj) (s Vag) (@ V) (& VE)(T; VI);

6) forr==6:

— (s V) (s Vag)(x; V) (T VE) (T V T) (T V Zk);

- (QL'Z \/l‘j)(l'z \Y I’k)(fz \Y I'])(IZ'% \Y I’k)(l'z \Y i’j \Y Q_L‘k)(ﬂ_fz \Y Q_L‘j \Y i’k),’
— (s V) (s Vap) (@ Vo) (& VE) (2 VT VEL) (T VTV ag);
7) forr="17:

— (xs V) (s Var) () Vag) (@ VE V) (& Ve V) (T VE Vo) (T VE] V Tk);
8) forr=38:

— (s Vay Vo) (z Va; VE) (2 VIV ag)(x; VE] V Te)A

/\(i’z \Y SL']' \Y l’k)(ﬂ_?z \Y l‘j \Y i’k)(i’z V i’j \Y l‘k)(ﬂ_'lz \Y Q_L‘j \/Q_L‘k)

2. Necessary and sufficient conditions in the 3-Satisfiability problem. Next
we shall consider the 3-Satisfiability problem only in its original form, i.e. when each
of the disjuncts in the 3-CNForms has a length exactly equal to 3. We suppose that
there are no repetitions of disjuncts in the 3-CNForms and we shall consider them as
boolean functions of so many variables as many they are in the corresponding form, i.e.
of n essential variables in the general case. Our goal is to define some necessary and
sufficient conditions, so that a 3-CNForm to be a form of 0 and these conditions to be
polynomial-time verifiable.

First we shall partition the set of all possible disjuncts of n variables into 4 non
intersecting each other subsets accotding to the number of negations which they contain.
Let X = {x1,2a,...,2,} be a set of variables. We shall note:

So = {xiVa;Vak| v, 2,2, € X}. Therefore |So| = (2)(3) = (3);
S1 = {ziVa;Vag| v, 2,2, € X}. Therefore |S1] = (3)(3) =3(%);
Sy = {z;V@;Vak| v, 2,2, € X}. Therefore |So| = (3)(3) = 3(%);
Sy = {z;V@;Vak| v, 7j,2, € X}. Therefore |Ss| = (3)(2) = (3).

So the set of all possible such disjuncts of n variables is S = Sy U S1 U Se U S3 and it
consists generally of 8(;’) disjuncts. Therefore 8(;’) is the maximum length of the input
of the 3-Satisfiability problem. We shall set m = (g) and we shall use m only for this
shorter notation further.

Definition. The disjunct D = :c?“ \/:c?j \Y :Ei’“ covers the vector a = (a1, az,...,a,) €
{0,1}" if « € Zp, i.e. D(ar,az,...,a,)=0.

Now let us consider how many vectors « € {0,1}" are covered generally by the
disjuncts from the sets Sp,...,S53. The disjuncts from the set Sy cover all the vectors
a, so that 0 < ||a|| < n — 3, i.e. all the vectors which contain at least 3 zeros. Their

@. By analogy the disjucts from the set S5 cover all the vectors
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a, so that 3 < ||a|| < n, i.e. all the vectors which contain at least 3 ones, and so their
number is 2" — 1 — @ again. The disjuncts from the set S; cover all the vectors «,
so that 1 < ||a|| < n — 2, i.e. all the vectors which contain at least 2 zeros and at least
1 one. Their number is 2" — 2 — n. And by analogy the disjucts from the set Sy cover
all the vectors «, so that 2 < ||a|| < n — 1, i.e. all the vectors which contain at least
1 zero and at least 2 ones, and so their number is 2" — 2 — n again. A partition of the
vectors from {0, 1}™ in accordance with their weight and which vectors each of the sets

So, - .., 53 covers is shown on the next figure.

Se A lal=0N\
/o al=1 0\

[ lal=2 S,

Fig. 1. Covering of the n—dimensional Boolean cube by the sets Sp, ..., Ss.
The next table presents the number of vectors in Sy, ..., S3 for the first several values
of n.
A set and a formula for its cardinality n=3|n=4|{n=5|n=6|n="7
|Sol = 2 —1 — 2D 1 5 16 42 99
[Si|=2"—-2—n 3 10 25 56 119
[S2] =2"—2—n 3 10 25 56 119
|S5] = 2 —1 — n(nF) 1 5 16 42 99
[So US1USyUS3| =2"2 —6 —n(n+3) 8 30 82 196 436
[{0,1}"] =2" 8 16 32 64 128

Table 1. Cardinality of the sets Sp,...,S3 and {0,1}" forn=3,...,7.

So, we can already formulate:

2.1. Necessary conditions for a 3-CNForm to be a form of 0.

1. The number of the disjuncts in the 3-CNForm (i.e. the length of the form) must
be at least 8.

Forms of 0 with less than 8 disjuncts does not exist — in accordance with Theorem
1.1, case r = 8. So, if the input length of the 3-Satisfiability problem is less than 8 then

7
. 8
the corresponding 3-CNForm is not a form of 0. The number of these forms is Z ( m) .
i
i=0
Definition. The 3-CNForm of the type (z; Vx; V ai)(x: Va; VZg)(x: VT Vo) (x; V
TjV VI (& Va,; Vv xk)(fcl;\/ ;i VITE) (T VIV ag) (T VEV Ti) we shall call a minimal
basic form (MBForm) of 0 and we shall denote it with M; ;.
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The next table shows the set S of all possible disjunct of the type D = x7* \/Jc;-r2 Vay?,

its partition in subsets Sy, ..., S3 and also its partition in MBForms.

Values of Possible values of (i, j, k) Set

(01,02,03) (1,2, 3) (1, 2, n) . (1, ], k) (n-2, n-1, n)
(0,0,0) T1V T2V T3 T1V T2V Tn T, VT; V Tk Tn-2VZTn1VZTn| S3
(0,0,1) T1V T2 Va3 T1V T2V Ty T VT; VT Tn—2V Tn-1V Tn
(0,1,0) TiIVZaVTs| - |TaVZ2V T | |Ti VT VT |- | Tne2 V Tn_1 V Tn || S2
(1,0,0) x1 VT2V I3 1 VIV In i VIV Tk Tn—2V ITn_1V ITn
(0,1,1) T1Vaa Va3 T1VIeVa, T, Vxj VT Tn—2V Tn-1V Tn
(1,0,1) T1VZ2VE3| |21 VIZ2VTn| | T VI VTE| | T2V ITn-1V Tn S1
(1,1,0) 1V VT3 1 VT2V Ty x; Vxj V T Tn—2V Tpn-1V Tn
(1,1,1) 1V x2 Vs 1 V2V, iV VT Tn—2 VZTn—1V Zn| So

MBForms Mios3 Mion M; jk Mny_2n-1,n

Table 2. The set S and its partitions.

2. An arbitrary 3-CNForm of 0 must have at least a disjunct from the set Sy (oth-
erwise the vector (0,0, ...,0) remains uncovered) and at least a disjunct from the set Ss
(otherwise the vector (1,1,...,1) remains uncovered) - see Figure 1.

How many are the 3-CNForms which does not contain a disjunct from at least one
of the sets Sy or S3, i.e. which are not forms of 0? These, which does not contain a
disjunct from Sy are 27 and so many are these which does not contain a disjunct from
S3. By the principle of inclusion and exclusion we obtain 277 4-27m — 26m — 27m+1 _ 96m

7
6
forms generally. Amongst them Z < m) contain less than 8 disjuncts. So the number
i
i=0
of 3-CNForms which are not forms of 0 is at least

", /8m ", /6m
27m+1726m+ <> <>
This is quite few: ~ 217=™ as a part of all possible 3-CNForms.

3. In dependence of the number of variables in an arbitrary 3-CNForm of 0 it is
necessary to participate:

— in the case of 3 variables — all the disjuncts from the sets Sy, ..., Ss3;

— in the case of 4 variables — disjuncts at least from 3 of these sets;

— in the case of 5 and more variables — disjuncts at least from 2 of these sets (when
the sets are exactly 2 they must be Sy and Ss).

This assertion follows from Theorem 1.1, Table 1 and Figure 1.

2.2. Sufficient conditions a 3-CNForm to be a form of 0.

1. Each 3-CNForm which contains all the disjuncts of an arbitrary MBForm (as a
subset of its disjuncts) is a form of 0. The truth of this assertion follows directly from
Theorem 1.1, case r = 8. Table 2 shows a partition of the set of all possible disjuncts S
in m different MBForms. We shall estimate the number of 3-CNForms of 0 from below,
using this sufficient condition. Let A denote the set of all 3-CNForms which contain (as
a subset) all the disjuncts of MBForm M 23 and with B — the set of all 3-CNForms
which contain (as a subset) all the disjuncts of Mj24. So |A| = |B| = 28™~8. The
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union A U B will consist of all possible 3-CNForms which contain (as a subset) all the
disjuncts of an arbitrary MBForm (or forms) and therefore their number is |[A U B| =

1
|A|+|B| — |[ANB| = 28m—8 4 28m=8 _ 98m—16 _ 98m (97 _ 9-16) This number is ~ 5

the part of all possible 3-CNForms. It is interesting that this correlation does not depend
on n.

2. Each 3-CNForm, which contains more than 7Tm disjuncts is a form of 0. To
prove this assertion we shall note, that a 3-CNForm which consists of all possible 8m
disjuncts obviously is a form of 0. What is the maximal number of disjucts which we
can remove so that the obtained form to stay a form of 0? To answer this question
we shall consider how many disjuncts cover one and the same vector a € {0,1}". Let
lle|] = k,0 < k < n and « has ones in positions 41,i9,...,ix. We form the set of
variables Y = {Z;,, Zi,, ..., Ti, L5y, Tjp, - - -, 5, } and we consider all possible disjuncts
D =y, V yq V yr where y,,yq, yr € Y. Obviously D(a) = 0. Therefore the number of all
possible such disjuncts is equal to the number of ways in which we can choose 3 variables
Yp, Yg, Yr from Y, ie. equal to m. So if we remove 1,2,3,...,m — 1 arbitrary disjuncts
from a 3-CNForm which consists of all possible 8m disjuncts this form remains a form of

m—1
0. In this way we obtain Z (87) such forms. We shall note that all these forms are
i=0
a subset of the 3-CNFforms of 0 considered in sufficient condition 1 and the given proof
and estimation can be deduced in another way.

2.3. The other cases. Now we shall consider the cases when we have neces-
sary conditions but we have not sufficient conditions (unfortunately these necessary
conditions are not sufficient conditions). Let us have a 3-CNForm of the function
feFy fleg,xe,...,2n) = Dy ADaA...ANDpy 8 <r < 7m. Let also this form
have at least one disjunct from the set Sy and at least one disjunct from the set S3. We
do not know a polynomial-time verifiable criterion whether this form is a form of 0, i.e.
whether f(z1,29,...,2,) = 0. Following the given definitions and assertions we can say
that Lemma 1.4 is a particular case of the principle of inclusion and exclusion — for 2
disjuncts or more exactly for their zero sets. When r > 2 we shall consider the coverings
of the sets Zp,,Zp,,...,Zp, and we shall apply the same principle, i.e.:

(1) |Z¢| = |ZpyADsA..AD.| = |ZD, UZDp, U...UZp, | =
.
=> 1Zp|= Y. |ZpnZp|+.. . +(-1)F" > |Zp,,NZp,,N...NZp, |+
i=1 1<i<j<r 1<iy <in<...<ip<r

+...+ (—1)T_1|ZD1 NZp,N...N ZDT|-
Let us consider the addends of the type |Zp, NZp,, N...N Zp,, | where k > m. It is easy
to see that each of them will contain at least 2 disjuncts D;, and D;_ such that if D,
contain a variable x; then D; will contain its negation Z;. In accordance with Lemma
1.1 |Zp, N Zp, | =0 and therefore |Zp, NZp,, N...N Zp, | = 0. So all the addends
in formula (1) will be zeros after a fixed place to the end. This formula reduces to
(2) |Z¢| =|ZDpyADon..AD, | =|ZD, UZp, U...UZp, | =
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T
=>1Zp|= Y. 1Zp.0Zp|+. . (=) > |Zp, NZp,,N...NZp, |-
i=1 1<i<j<r 1<i1 <ig<...<ipn <
After removing of too many addends the next question arises immediately: “Whether
a formula (2) can be calculated in a polynomial time?”. The answer is “No” (by now).
Using the binomial bounds given in [3] and especially (Z) > (%)k we shall give one rough
estimation only of the number of the additions and subtractions in formula (2). We set
r = 7m and so their number is:

3) 7m+7mJr +7m>7m1+ 7m2+ Jr7mm>
1 2 m)~ \1 2 m
> 7™ = (V7)¥™ = (1,275)%™.
3. Conclusions. It is important to note that we can describe algorithms which
verify in polynomial time each necessary or sufficient condition which has been already
formulated. Unfortunately, they refer to a small part of cases in the 3-Satisfiability

problem. If we denote with N the number of all 3-CNForms of 0 we shall obtain the next
estimations:

7 7
8m 6m
28m 277 o 2716 < N < 28m o 27m+1 _ 26m o
The inequalities in formula (3) show that in the most of cases the 3-Satisfiability problem
remains NP-hard.
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HAKON HEOBXOANMMU NI HAKOUW JOCTAT'BYHU YCJIOBUA B
S3AJAYATA 3A 3-YIOBJIETBOPUMOCT

Banentun IleneB BakoeB, Kpacumup Henemnue Maues

Taka wHapedenara 3ajada 3a 3-yJOBJIETBOPUMOCT 3a€Ma BayKHO MSCTO B TEOPHUSITA
3a NP-mrbiiHOTaTa Ha 33729 W ajaropuTMu. Tasu paboTa e MPOIbJKEeHUe Ha JIpy-
ra MpPeJIuIHA, B KOSITO €€ PaslIeXkJIaT W KJIACU(UIUPAT KOHIOHKTUBHU HOPMAJHU
dopMu Ha KOHCTAHTATa HYJa - TE3W, KOUTO CbIbP:KAT J0 3 OYKBU Ha IPOMEHJIUBU
(3-KH®opwmu). Tyx 1ie usBesieM HSIKOM HEOOXOAUMHU U JIOCTATHUHE YCIOBHUSI, OLIPe/ie-
JIIm Jasm ganenn Muoxkectsa ot 3-KH®opMmu ca nim He ca (hopmu Ha KOHCTaAHTATA
HyJIa, KOUTO yCJOBUS Ca IOJMHOMHUAJHO ITpoBepuMu. JlajgeHn ca u HIKOM OIEHKHU 3a
6post Ha Te3u (HOPMHU.
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