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SOME NECESSARY AND SOME SUFFICIENT

CONDITIONS ABOUT THE 3-SATISFIABILITY PROBLEM

Valentin P. Bakoev, Krassimir N. Manev

The so called 3-satisfiability problem takes an important place in the theory of NP-
completeness of problems and algorithms. This work is a continuation of a previous
one, where conjunctive normal forms of the zero function namely forms, such that any
disjunct of which has no more than three literals (3-CNForms) have been considered
and classified. Here we shall deduce some necessary and some sufficient conditions
which determine whether given sets of 3-CNForms are or are not forms of the zero
function. These conditions are polynomial-time verifiable. Some estimations of the
number of these forms are also given.

1. Introduction and preliminary results. Each function from the set
Fn

2 = {f |f : {0, 1}n → {0, 1}} is called a Boolean function of n independent vari-
ables x1, x2, . . . , xn and it is denoted f(x1, x2, . . . , xn). The union F2 = F1

2 ∪ F2
2 ∪ . . . ∪

Fn
2 ∪ . . . denotes the set of all Boolean functions. The function f0(x1, x2, . . . , xn), where

f0(a1, a2, . . . , an) = 0 for any true assignment (a1, a2, . . . , an) from the n-dimensional
Boolean cube {0, 1}n (for n = 1, 2, . . .) is called a zero function and denoted 0̃. The fa-
mous theorem of George Bool proves that for any function f ∈ F2 there exists a formula
over the set {x̄, x1 ∨ x2, x1x2}.

The function f(x, d) = xd is defined by xd =

{
x̄ if d = 0
x if d = 1

and the formula xd1

i1
∨

∨xd2

i2
∨ . . . ∨ xdm

im
where xij 6= xik for j 6= k is called a disjunct of length m. We consider

the zero function as a disjunct of length 0. The formula D1 ∧ D2 ∧ · · · ∧ Dr, where
D1, D2, . . . , Dr are different disjuncts is called a conjunctive normal form (CNForm) of
the corresponding function. The Bool’s theorem implies that at least one CNForm exists
for any Boolean function different from 1̃. The true assignment (a1, a2, . . . , an) ∈ {0, 1}n
satisfies a formula ϕ of the Boolean function fϕ of n variables if fϕ(a1, a2, . . . , an) = 1.

A problem of recognition from the theory of Boolean functions has the honor to
be the first member of the whole class of interesting problems for whose solving no
good algorithms are known – the so called NP-complete problems [1]. This problem
is called CNForm Satisfiability (or simply Satisfiability) and it is formulated so: ”A
Boolean function in a conjunctive normal form ϕ is given. Is there a true assignment
that satisfies ϕ?” The basic theorem of Cook in [1] states that the Satisfiability is NP-
complete problem. When each of the disjuncts in the CNForm D1 ∧ D2 ∧ · · · ∧ Dr has
a length = 3, this form is called a 3-CNForm. It is also proved that the Satisfiability
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problem is reducible in polynomial time to the following problem, called a 3-Satisfiability:
”A Boolean function fϕ in a 3-CNForm ϕ is given. Is there a true assignment that satisfies
ϕ?”. That is why we shall consider only 3-CNForms. The question of the 3-Satisfiability
problem can be formulated as following: ”Whether the 3-CNForm ϕ is a form of the zero
function?”.

In [2] we started to examine the 3-CNForms of 0̃ with up to 3 essential variables under
some ”equivalencies” and gave a full classification under these equivalencies. The basic
definitions and assertions are:

Definition.The 3-CNForm ϕ′ of 0̃ is pn-equivalent to the formula ϕ of 0̃ if it is
obtained from ϕ by a permutation and/or negations of variables.

Definition.Let D1 ∧D2 ∧ · · · ∧Dr be a 3-CNForm ϕ of 0̃. For any j ∈ N, 1 ≤ j ≤ r

the form D1 ∧ · · · ∧Dj−1 ∧Dj+1 ∧ · · · ∧Dr is called a cut of Dj in ϕ. The form ϕ of 0̃
is called cut-irreducible if any cut in ϕ makes it a 3-CNForm which is not a form of 0̃.

Definition.Let D1∧D2∧· · ·∧Dr be a 3-CNForm of 0̃. If Dj = xσ1

j1
∨xσ2

j2
∨ . . .∨xσs

js
,

2 ≤ s ≤ n and D′
j = xσ1

j1
∨ . . . ∨ x

σk−1

jk−1
∨ x

σk+1

jk+1
∨ . . . ∨ xσs

js
for some k, 1 ≤ k ≤ s, then

D1 ∧ · · · ∧ Dj−1 ∧ D′
j ∧ Dj+1 ∧ · · · ∧Dr is called a puncture of the variable xσk

jk
in Dj.

The form ϕ of 0̃ is called puncture-irreducible if any puncture in ϕ reduces it to CNForm
which is not cut-irreducible.

Definition.The 3-CNForm ϕ of 0̃ is called irreducible if it is cut-irreducible and it
is puncture-irreducible.

For any function f ∈ Fn
2 we shall denote

Zf = {(a1, a2, . . . , an)|(a1, a2, . . . , an) ∈ {0, 1}n, f(a1, a2, . . . , an) = 0}.
Lemma 1.1. If the disjunct D = xσ1

i1
∨ xσ2

i2
∨ . . . ∨ xσk

ik
, 0 ≤ k ≤ n, is a Boolean

function of n variables, then ZD is a (n − k)-dimensional subcube of the n-dimensional
cube {0, 1}n and so |ZD| = 2n−k.

Lemma 1.2.Let the disjuncts D1 and D2 be Boolean functions of n variables. If
there is xi in D1 and x̄i in D2, then ZD1

∩ ZD2
= ∅.

Lemma 1.3. If the disjuncts D1, D2, . . . , Dk of length 1 are Boolean functions of n
variables, different disjuncts comprise different variables and ϕ = D1 ∧ D2 ∧ · · · ∧ Dk,
then |Zϕ| = 2n − 2n−k.

Lemma 1.4.Let the disjuncts D1 = xa1

i1
∨ . . . ∨ xak

ik
∨ xb1

j1
∨ . . . ∨ x

bp
jp

and D2 =

xa1

i1
∨ . . . ∨ xak

ik
∨ xc1

m1
∨ . . . ∨ x

cq
mq are Boolean functions of n variables, 0 ≤ k ≤ n,

0 ≤ p ≤ n− k, 0 ≤ q ≤ n− k − p and xjs 6= xmt
for s 6= t. Then:

1) |ZD1
∩ ZD2

| = 2n−(k+p+q)

2) |ZD1∧D2
| = 2n−(k+p+q)(2p + 2q − 1)

Theorem 1.1.The irreducible 3-CNForms D1 ∧ D2 ∧ · · · ∧ Dr of 0̃ with up to 3
variables are:

1) for r = 1: the disjunct of length 0 or 0̃;
2) for r = 2: xix̄i;
3) for r = 3: xixj(x̄i ∨ x̄j);
4) for r = 4:
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— xixjxk(x̄i ∨ x̄j ∨ x̄k);
— xixj(x̄i ∨ xk)(x̄j ∨ x̄k);
— (xi ∨ xj)(xi ∨ x̄j)(x̄i ∨ xj)(x̄i ∨ x̄j);
5) for r = 5:
— xi(xj ∨ xk)(xj ∨ x̄k)(x̄j ∨ xk)(x̄i ∨ x̄j ∨ x̄k);
— (xi ∨ xj)(xi ∨ xk)(x̄i ∨ xj)(x̄i ∨ xk)(x̄j ∨ x̄k);
— (xi ∨ xj)(xi ∨ xk)(x̄i ∨ xj)(x̄i ∨ x̄j)(x̄j ∨ x̄k);
6) for r = 6:
— (xi ∨ xj)(xi ∨ xk)(xj ∨ xk)(x̄i ∨ x̄j)(x̄i ∨ x̄k)(x̄j ∨ x̄k);
— (xi ∨ xj)(xi ∨ xk)(x̄i ∨ xj)(x̄i ∨ xk)(xi ∨ x̄j ∨ x̄k)(x̄i ∨ x̄j ∨ x̄k);
— (xi ∨ xj)(xi ∨ xk)(x̄i ∨ xj)(x̄i ∨ x̄k)(xi ∨ x̄j ∨ x̄k)(x̄i ∨ x̄j ∨ xk);
7) for r = 7:
— (xi ∨ xj)(xi ∨ xk)(xj ∨ xk)(xi ∨ x̄j ∨ x̄k)(x̄i ∨ xj ∨ x̄k)(x̄i ∨ x̄j ∨ xk)(x̄i ∨ x̄j ∨ x̄k);
8) for r = 8:
— (xi ∨ xj ∨ xk)(xi ∨ xj ∨ x̄k)(xi ∨ x̄j ∨ xk)(xi ∨ x̄j ∨ x̄k)∧
∧(x̄i ∨ xj ∨ xk)(x̄i ∨ xj ∨ x̄k)(x̄i ∨ x̄j ∨ xk)(x̄i ∨ x̄j ∨ x̄k).

2. Necessary and sufficient conditions in the 3-Satisfiability problem. Next
we shall consider the 3-Satisfiability problem only in its original form, i.e. when each
of the disjuncts in the 3-CNForms has a length exactly equal to 3. We suppose that
there are no repetitions of disjuncts in the 3-CNForms and we shall consider them as
boolean functions of so many variables as many they are in the corresponding form, i.e.
of n essential variables in the general case. Our goal is to define some necessary and
sufficient conditions, so that a 3-CNForm to be a form of 0̃ and these conditions to be
polynomial-time verifiable.

First we shall partition the set of all possible disjuncts of n variables into 4 non
intersecting each other subsets accotding to the number of negations which they contain.
Let X = {x1, x2, . . . , xn} be a set of variables. We shall note:

S0 = {xi ∨ xj ∨ xk| xi, xj , xk ∈ X}. Therefore |S0| =
(
3
0

)(
n
3

)
=
(
n
3

)
;

S1 = {x̄i ∨ xj ∨ xk| xi, xj , xk ∈ X}. Therefore |S1| =
(
3
1

)(
n
3

)
= 3
(
n
3

)
;

S2 = {x̄i ∨ x̄j ∨ xk| xi, xj , xk ∈ X}. Therefore |S2| =
(
3
2

)(
n
3

)
= 3
(
n
3

)
;

S3 = {x̄i ∨ x̄j ∨ x̄k| xi, xj , xk ∈ X}. Therefore |S3| =
(
3
3

)(
n
3

)
=
(
n
3

)
.

So the set of all possible such disjuncts of n variables is S = S0 ∪ S1 ∪ S2 ∪ S3 and it
consists generally of 8

(
n
3

)
disjuncts. Therefore 8

(
n
3

)
is the maximum length of the input

of the 3-Satisfiability problem. We shall set m =
(
n
3

)
and we shall use m only for this

shorter notation further.

Definition.The disjunct D = xdi

i ∨x
dj

j ∨ xdk

k covers the vector α = (a1, a2, . . . , an) ∈
{0, 1}n if α ∈ ZD, i.e. D(a1, a2, . . . , an) = 0.

Now let us consider how many vectors α ∈ {0, 1}n are covered generally by the
disjuncts from the sets S0, . . . , S3. The disjuncts from the set S0 cover all the vectors
α, so that 0 ≤ ||α|| ≤ n − 3, i.e. all the vectors which contain at least 3 zeros. Their

number is 2n − 1− n(n+1)
2 . By analogy the disjucts from the set S3 cover all the vectors
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α, so that 3 ≤ ||α|| ≤ n, i.e. all the vectors which contain at least 3 ones, and so their

number is 2n − 1 − n(n+1)
2 again. The disjuncts from the set S1 cover all the vectors α,

so that 1 ≤ ||α|| ≤ n− 2, i.e. all the vectors which contain at least 2 zeros and at least
1 one. Their number is 2n − 2 − n. And by analogy the disjucts from the set S2 cover
all the vectors α, so that 2 ≤ ||α|| ≤ n − 1, i.e. all the vectors which contain at least
1 zero and at least 2 ones, and so their number is 2n − 2 − n again. A partition of the
vectors from {0, 1}n in accordance with their weight and which vectors each of the sets
S0, . . . , S3 covers is shown on the next figure.

Fig. 1. Covering of the n−dimensional Boolean cube by the sets S0, . . . , S3.

The next table presents the number of vectors in S0, . . . , S3 for the first several values
of n.

A set and a formula for its cardinality n = 3 n = 4 n = 5 n = 6 n = 7

|S0| = 2n − 1− n(n+1)
2 1 5 16 42 99

|S1| = 2n − 2− n 3 10 25 56 119
|S2| = 2n − 2− n 3 10 25 56 119

|S3| = 2n − 1− n(n+1)
2 1 5 16 42 99

|S0 ∪ S1 ∪ S2 ∪ S3| = 2n+2 − 6− n(n+ 3) 8 30 82 196 436
|{0, 1}n| = 2n 8 16 32 64 128

Table 1. Cardinality of the sets S0, . . . , S3 and {0, 1}n for n = 3, . . . , 7.

So, we can already formulate:
2.1. Necessary conditions for a 3-CNForm to be a form of 0̃.
1. The number of the disjuncts in the 3-CNForm (i.e. the length of the form) must

be at least 8.
Forms of 0̃ with less than 8 disjuncts does not exist – in accordance with Theorem

1.1, case r = 8. So, if the input length of the 3-Satisfiability problem is less than 8 then

the corresponding 3-CNForm is not a form of 0̃. The number of these forms is

7∑

i=0

(
8m

i

)
.

Definition.The 3-CNForm of the type (xi ∨ xj ∨ xk)(xi ∨ xj ∨ x̄k)(xi ∨ x̄j ∨ xk)(xi ∨
x̄j ∨ ∨x̄k)(x̄i ∨ xj ∨ xk)(x̄i ∨ xj ∨ x̄k)(x̄i ∨ x̄j ∨ xk)(x̄i ∨ x̄j ∨ x̄k) we shall call a minimal
basic form (MBForm) of 0̃ and we shall denote it with Mi,j,k.
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The next table shows the set S of all possible disjunct of the type D = xσ1

i ∨xσ2

j ∨xσ3

k ,
its partition in subsets S0, . . . , S3 and also its partition in MBForms.

Values of Possible values of (i, j, k) Set
(σ1, σ2, σ3) (1, 2, 3) · · · (1, 2, n) · · · (i, j, k) · · · (n-2, n-1, n)

(0,0,0) x̄1 ∨ x̄2 ∨ x̄3 x̄1 ∨ x̄2 ∨ x̄n x̄i ∨ x̄j ∨ x̄k x̄n−2 ∨ x̄n−1 ∨ x̄n S3

(0,0,1) x̄1 ∨ x̄2 ∨ x3 x̄1 ∨ x̄2 ∨ xn x̄i ∨ x̄j ∨ xk x̄n−2 ∨ x̄n−1 ∨ xn

(0,1,0) x̄1 ∨ x2 ∨ x̄3 · · · x̄1 ∨ x2 ∨ x̄n · · · x̄i ∨ xj ∨ x̄k · · · x̄n−2 ∨ xn−1 ∨ x̄n S2

(1,0,0) x1 ∨ x̄2 ∨ x̄3 x1 ∨ x̄2 ∨ x̄n xi ∨ x̄j ∨ x̄k xn−2 ∨ x̄n−1 ∨ x̄n

(0,1,1) x̄1 ∨ x2 ∨ x3 x̄1 ∨ x2 ∨ xn x̄i ∨ xj ∨ xk x̄n−2 ∨ xn−1 ∨ xn

(1,0,1) x1 ∨ x̄2 ∨ x3 · · · x1 ∨ x̄2 ∨ xn · · · xi ∨ x̄j ∨ xk · · · xn−2 ∨ x̄n−1 ∨ xn S1

(1,1,0) x1 ∨ x2 ∨ x̄3 x1 ∨ x2 ∨ x̄n xi ∨ xj ∨ x̄k xn−2 ∨ xn−1 ∨ x̄n

(1,1,1) x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ xn xi ∨ xj ∨ xk xn−2 ∨ xn−1 ∨ xn S0

MBForms M1,2,3 · · · M1,2,n · · · Mi,j,k · · · Mn−2,n−1,n

Table 2. The set S and its partitions.

2. An arbitrary 3-CNForm of 0̃ must have at least a disjunct from the set S0 (oth-
erwise the vector (0, 0, . . . , 0) remains uncovered) and at least a disjunct from the set S3

(otherwise the vector (1, 1, . . . , 1) remains uncovered) - see Figure 1.
How many are the 3-CNForms which does not contain a disjunct from at least one

of the sets S0 or S3, i.e. which are not forms of 0̃? These, which does not contain a
disjunct from S0 are 27m and so many are these which does not contain a disjunct from
S3. By the principle of inclusion and exclusion we obtain 27m+27m−26m = 27m+1−26m

forms generally. Amongst them

7∑

i=0

(
6m

i

)
contain less than 8 disjuncts. So the number

of 3-CNForms which are not forms of 0̃ is at least

27m+1 − 26m +

7∑

i=0

(
8m

i

)
−

7∑

i=0

(
6m

i

)
.

This is quite few: ≈ 21−m as a part of all possible 3-CNForms.
3. In dependence of the number of variables in an arbitrary 3-CNForm of 0̃ it is

necessary to participate:
— in the case of 3 variables – all the disjuncts from the sets S0, . . . , S3;
— in the case of 4 variables – disjuncts at least from 3 of these sets;
— in the case of 5 and more variables – disjuncts at least from 2 of these sets (when

the sets are exactly 2 they must be S0 and S3).
This assertion follows from Theorem 1.1, Table 1 and Figure 1.
2.2. Sufficient conditions a 3-CNForm to be a form of 0̃.
1. Each 3-CNForm which contains all the disjuncts of an arbitrary MBForm (as a

subset of its disjuncts) is a form of 0̃. The truth of this assertion follows directly from
Theorem 1.1, case r = 8. Table 2 shows a partition of the set of all possible disjuncts S
in m different MBForms. We shall estimate the number of 3-CNForms of 0̃ from below,
using this sufficient condition. Let A denote the set of all 3-CNForms which contain (as
a subset) all the disjuncts of MBForm M1,2,3 and with B – the set of all 3-CNForms
which contain (as a subset) all the disjuncts of M1,2,4. So |A| = |B| = 28m−8. The
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union A ∪ B will consist of all possible 3-CNForms which contain (as a subset) all the
disjuncts of an arbitrary MBForm (or forms) and therefore their number is |A ∪ B| =
|A|+ |B|− |A∩B| = 28m−8+28m−8− 28m−16 = 28m(2−7− 2−16). This number is ≈ 1

128
the part of all possible 3-CNForms. It is interesting that this correlation does not depend
on n.

2. Each 3-CNForm, which contains more than 7m disjuncts is a form of 0̃. To
prove this assertion we shall note, that a 3-CNForm which consists of all possible 8m
disjuncts obviously is a form of 0̃. What is the maximal number of disjucts which we
can remove so that the obtained form to stay a form of 0̃? To answer this question
we shall consider how many disjuncts cover one and the same vector α ∈ {0, 1}n. Let
||α|| = k, 0 ≤ k ≤ n and α has ones in positions i1, i2, . . . , ik. We form the set of
variables Y = {x̄i1 , x̄i2 , . . . , x̄ik , xj1 , xj2 , . . . , xjn−k

} and we consider all possible disjuncts
D = yp ∨ yq ∨ yr where yp, yq, yr ∈ Y . Obviously D(α) = 0. Therefore the number of all
possible such disjuncts is equal to the number of ways in which we can choose 3 variables
yp, yq, yr from Y , i.e. equal to m. So if we remove 1, 2, 3, . . . ,m− 1 arbitrary disjuncts
from a 3-CNForm which consists of all possible 8m disjuncts this form remains a form of

0̃. In this way we obtain

m−1∑

i=0

(
8m

i

)
such forms. We shall note that all these forms are

a subset of the 3-CNFforms of 0̃ considered in sufficient condition 1 and the given proof
and estimation can be deduced in another way.

2.3. The other cases. Now we shall consider the cases when we have neces-
sary conditions but we have not sufficient conditions (unfortunately these necessary
conditions are not sufficient conditions). Let us have a 3-CNForm of the function
f ∈ Fn

2 , f(x1, x2, . . . , xn) = D1 ∧ D2 ∧ . . . ∧ Dr, 8 ≤ r ≤ 7m. Let also this form
have at least one disjunct from the set S0 and at least one disjunct from the set S3. We
do not know a polynomial-time verifiable criterion whether this form is a form of 0̃, i.e.
whether f(x1, x2, . . . , xn) = 0̃. Following the given definitions and assertions we can say
that Lemma 1.4 is a particular case of the principle of inclusion and exclusion – for 2
disjuncts or more exactly for their zero sets. When r > 2 we shall consider the coverings
of the sets ZD1

, ZD2
, . . . , ZDr

and we shall apply the same principle, i.e.:

|Zf | = |ZD1∧D2∧...∧Dr
| = |ZD1

∪ ZD2
∪ . . . ∪ ZDr

| =(1)

=

r∑

i=1

|ZDi
|−

∑

1≤i<j≤r

|ZDi
∩ZDj

|+. . .+(−1)k−1
∑

1≤i1<i2<...<ik≤r

|ZDi1
∩ZDi2

∩. . .∩ZDik
|+

+ . . .+ (−1)r−1|ZD1
∩ ZD2

∩ . . . ∩ ZDr
|.

Let us consider the addends of the type |ZDi1
∩ZDi2

∩ . . .∩ZDik
| where k > m. It is easy

to see that each of them will contain at least 2 disjuncts Dip and Diq such that if Dip

contain a variable xj then Diq will contain its negation x̄j . In accordance with Lemma
1.1 |ZDip

∩ ZDiq
| = 0 and therefore |ZDi1

∩ ZDi2
∩ . . . ∩ ZDik

| = 0. So all the addends
in formula (1) will be zeros after a fixed place to the end. This formula reduces to

|Zf | = |ZD1∧D2∧...∧Dr
| = |ZD1

∪ ZD2
∪ . . . ∪ ZDr

| =(2)
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=
r∑

i=1

|ZDi
|−

∑

1≤i<j≤r

|ZDi
∩ZDj

|+. . .+(−1)m−1
∑

1≤i1<i2<...<im≤r

|ZDi1
∩ZDi2

∩. . .∩ZDim
|.

After removing of too many addends the next question arises immediately: “Whether
a formula (2) can be calculated in a polynomial time?”. The answer is “No” (by now).
Using the binomial bounds given in [3] and especially

(
n
k

)
≥ (n

k
)k we shall give one rough

estimation only of the number of the additions and subtractions in formula (2). We set
r = 7m and so their number is:(

7m

1

)
+

(
7m

2

)
+ . . .+

(
7m

m

)
≥
(
7m

1

)1

+

(
7m

2

)2

+ . . .+

(
7m

m

)m

>(3)

> 7m = (
8
√
7)8m ≈ (1, 275)8m.

3. Conclusions. It is important to note that we can describe algorithms which
verify in polynomial time each necessary or sufficient condition which has been already
formulated. Unfortunately, they refer to a small part of cases in the 3-Satisfiability
problem. If we denote with N the number of all 3-CNForms of 0̃ we shall obtain the next
estimations:

28m(2−7 − 2−16) ≤ N ≤ 28m −
(
27m+1 − 26m +

7∑

i=0

(
8m

i

)
−

7∑

i=0

(
6m

i

))
.

The inequalities in formula (3) show that in the most of cases the 3-Satisfiability problem
remains NP-hard.
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НЯКОИ НЕОБХОДИМИ И НЯКОИ ДОСТАТЪЧНИ УСЛОВИЯ В

ЗАДАЧАТА ЗА 3-УДОВЛЕТВОРИМОСТ

Валентин Пенев Бакоев, Красимир Неделчев Манев

Така наречената задача за 3-удовлетворимост заема важно място в теорията
за NP-пълнотата на задачи и алгоритми. Тази работа е продължение на дру-
га предишна, в която се разглеждат и класифицират конюнктивни нормални
форми на константата нула - тези, които съдържат до 3 букви на променливи
(3-КНФорми). Тук ще изведем някои необходими и достатъчни условия, опреде-
ляши дали дадени множества от 3-КНФорми са или не са форми на константата
нула, които условия са полиномиално проверими. Дадени са и някои оценки за
броя на тези форми.
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