
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2000
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2000

Proceedings of Twenty Ninth Spring Conference of
the Union of Bulgarian Mathematicians

Lovetch, April 3–6, 2000

PLATO: A LANGUAGE FOR GEOMETRIC ILLUSTRATIONS

Boyko B. Bantchev*

We present a descriptive language in which planimetric illustrations can be expressed.
The language is suitable for specifying a wide class of figures that typically appear in
textbooks on geometry. It is easy to use and the resulting specifications are small in
volume and clear. An interpretive implementation of the language translates specifi-
cations into PostScript, and thus geometric figures can be reproduced independently
or incorporated in a document into a number of document-processing environments.

Introduction. Desktop publishing becomes more and more an everyday activity for

an increasingly large number of people. High-resolution printers are widely available,

and page layout and design software that manipulates scalable fonts and makes use of

picture inclusion is now commonplace.

An important part of the publishing process is the preparation of diagrams and figures

that have to be incorporated in a document. A large number of general-purpose programs

with sophisticated GUIs that aid in this kind of work are on the market or in the public

domain.

Specific kinds of pictures, however, require specific means for their creation. Often,

a well designed descriptive language is preferrable to using GUI programs. We believe

that this is the case with drawing planimetric figures, and propose a language that eases

the creation of such figures.

In this language, named PLATO, a planimetric illustration is drawn with a series

of commands for construction of geometric objects, as well as for placing denotational

material to accompany the drawing. The commands are very natural in use and the

resulting description – a specification of the illustration – is expressive and compact. An

interpreter translates this specification into PostScript – the internationally recognized

as standard and massively used page description language. PostScript provides a device

independent high quality representation of a picture that can be reproduced in virtually

all operating environments or sent directly to a printer.

PLATO can be used by the authors or illustrators of textbooks and reference books

in geometry, as well as teachers, students and anyone interested in the creation of such

kind of drawings.

*This work has been partially supported by contract V-RP-I-3/1999 with the Ministry of Education
and Science of Bulgaria.

241



Why a language? It is the popular practice nowadays that geometric illustrations

(as well as many others) are created using some general-purpose GUI program, such

as CorelDraw. Using a general-purpose program, however, is not satisfactory for the

following two major reasons. Firstly, such a program, because of its general orientedness,

is not well suited for the particular need: it lacks a number of desireful methods of

construction that a geometer would think of as necessary ones; it is also far from being

well equipped with tools for providing auxiliary denotations in the drawing, while in

almost any drawing these are very important. As a result, the illustrations created using

a general-purpose GUI program, are not of very good quality.

Secondly, it is a general principle that the more details one needs to put in the

specification of some formal object, the less likely is that an interactive program is the

proper tool for doing this; instead, an adequately designed (text) language should be

used. For example, for serious programming, a visual programming language is not a

match to a ‘text’ one. Or, in the world of document preparation, MS Word is very

inefficient in terms of flexibility, to compare it with TEX. The same argument applies to

our object of consideration.

So, a specifically designed language for describing geometric illustrations is the tool

we should be seeking for.

This conclusion is supported by the successful application of PIC [2], IDEAL [3] and

the more recent MetaPost [1]. These are descriptive languages for drawing illustrations

of another sort, and they have proved to be adequate tools for the purpose for which

they have been created.

Essentials of the PLATO approach to constructing figures. A figure descrip-

tion in PLATO is a sequence of commands, some of which construct geometric objects,

others place accompanying material – such as text, arrowheads, angular marks and hatch

marks, yet others change modes or serve similar purposes.

To construct a geometric object, one of the available construction commands must

be used. In the act of construction, the object itself and/or its constituting parts may

receive names, depending on the user’s choice. They also may be drawn or not, also

selectively, and independently of whether any naming takes place. Thus, a construction

command has the following functions:

• it constructs a geometric object;
• it gives the constructed object a name (optionally);
• it draws the constructed object (this is the default but it may be suppressed);
• it (optionally) decomposes the object, so that (some of) its constituents

— receive names (optionally), and/or

— are themselves drawn (which is the default if decomposition takes place, but

may be suppressed).

The basic kinds of geometric objects that PLATO can construct are point, line seg-

ment, line, circle, triangle and quadrilateral. For each type of object, there is a construc-

tion command named after that object, which provides several construction methods,

distinguishable among each other by the sequence of their input arguments. Thus, in the

current version of the language, there are two variants for any of the point, segment and

242



line commands, three variants of the circle command, six variants of the triangle

command, and one variant of the quad command.

Other construction commands serve to create objects ‘in sub-ordination’ to other ones

(bisectors, medians, altitudes in a triangle, inscribed and circumscribed circles etc.), or to

produce a copy of an already constructed object by means of a congruence transformation,

or simply to construct a particular variant of a basic kind of an object (trapeziums,

parallelograms, rectangles and squares as specific kinds of quadrilaterals).

For each object type, there is a fixed set of attribute names that allow characteristic

values of that object to be refered to. Some attributes are numeric, others are geometric

objects themselves.

For example, if s is a segment, s.p1 is its start point, and s.p1.x is the x-coordinate

of that point. Other attributes’ names for a segment are p2, len and slp – its end point,

length and slope correspondingly.

For each type of object there is a specific kind of constructor that distinguishes it from

the others. A constructor is used for an ad hoc creation of objects of the corresponding

type. It is a list of values that stand for some of the attributes for that object: by assigning

each value to the attribute it corresponds to, an object is created. A constructor itself

represents a value – the constructed geometric object, which allows constructors to be

nested.

For example, a constructor of a point is a list of two values that represent its coor-

dinates; a constructor of a line segment is a list of two values that represent the start

and the end points of the segment. So, if a and b name two points, [a,b] would be a

segment constructor. The attribute with the name p1 of the resulting segment will have

the value of a, while that with the name p2 takes the value of b.

Similarly, a point can be created by the constructor [x+5,y*2], where x and y are

numeric values, and thus [[x+5,y*2],b] is also a valid segment constructor.

Constructors are not meant to be used for direct construction of geometric objects.

Rather, they serve as input arguments to PLATO commands – those that construct

objects or others. As an example, consider the command

segment([x+5,y*2],b) -> p

which constructs a segment by specifying an (ad hoc created) start point [x+5,y*2] and

a (named) end point b.

The general form of a construction command is

name (arguments) -> pattern

where pattern is another important concept in PLATO. A pattern must correspond to

the type of object that is being constructed with the particular command. The last one

, however, does not play a rôle here, only the type of the object that it constructs does.

The pattern has a similar list structure to that of the constructor for the same type of

object. This includes the possibility of nesting patterns in the same way as constructors

are nested. The following differences, however, distinguish a pattern from a constructor.
• All the elements within a pattern are names, not values.
• A pattern, or its sub-pattern, or both, may themselves have names. If so, the name

immediately precedes the pattern.

243



Also, the name alone can be specified, with no (sub-)pattern at all; i.e., either the

pattern or the name may be omitted, but not both.

• Wherever a name may appear in the pattern or its sub-patterns, the dummy name

. (a dot) may appear in its place.

• As a result of the construction, each name in the pattern and in its sub-patterns

receives the value of a corresponding attribute of the constructed object or of its

sub-objects (unlike constructors, where the elements transmit values).

In this respect, a construction command may be viewed as a multiple-assignment

action. Dummy-named elements do not participate in the assignment.

• By default, the constructed object is drawn, unless a minus sign (-) precedes its

name or the pattern on the right hand side of the construction command. The

same applies to all sub-patterns or the corresponding names: for each sub-pattern,

the corresponding sub-object is drawn by default, or this is suppressed by inserting

a -.

The drawing/suppressing activity is independent of the use of dummies for naming.

In summary, the use of patterns amounts to the following. A pattern serves to decom-

pose a geometric object value into parts, or to decompose those parts, etc. Decomposition

enables name-value bindings to occur, as well as drawing sub-parts to take place. Wher-

ever just a name suffices, a sub-patterning is not needed. Wherever a binding or drawing

a sub-object is not desired, it can be suppressed.

To extend the above segment construction example by use of patterns, consider

segment([x+5,y*2],b) -> p[A,[.,y1]]

where the segment itself receives the name p, its start point then is named A, the y-

coordinate of the end point is named y1, and both the segment and the two points are

drawn; also consider

segment([x+5,y*2],b) -> -[-A[x1,.],[.,y1]]

where the start point now is not drawn, but is both named and decomposed, so the name

x1 is bound to that point’s x-coordinate. The constructed segment is neither named nor

drawn.

Other features. PLATO has a rich set of construction commands that incorporate

the power of planimetric construction methods most likely to suffice in a number of illus-

tration applications. Clearly, though, however rich that set is, not all possible drawings

will be directly obtainable by use of construction commands.

Therefore, PLATO provides the possibility of doing arithmetic and some special func-

tions’ computations and storing the result by means of binding a name to it. The so

obtained values can then participate in other computations, or they can feed a construc-

tion directly by supplying the required input for it. The use of numerical values, readily

available as the attributes of the already constructed geometric objects, is also important

here.

The command produce in the form

produce(arithmetic expression ) -> name

244



binds the specified name to the computed value from the left, and is thus analogous to

an assignment statement in a programming language.

Another form of produce, namely

produce(object name ) -> pattern

may be used with an already constructed object and a proper pattern for it to obtain the

side effects (name binding, drawing) that otherwise may have been obtained at the time

the object had been constructed.

Such a delayed treatment is always possible with no loss of generality, provided that

the object has a name by which it can be referred to. This ‘trick’ is sometimes helpful

for reasons of dealing with visualization subtleties (planned effects of putting one part of

the resulting image on top of another; see the example at the end of this paper).

PLATO also has a rich set of commands that provide auxiliary (purely denotational)

elements in the drawing. These include, besides placement of text with various fonts

and sub-/superscripts, as well as with Greek letters and other special characters, the

specification and placement of the following:

• arrowhead marks (in six possible styles)

• hatch marks (for line segments, in four possible styles)

• angular marks (in eight possible styles)

• hatch-filling a contour (in three possible ‘basic’ styles, with variations of each one)

In addition, commands exist for selecting a colour, a line style and thickness, and a

clipping region. All these can be varied as necessary within the same drawing.

The set of commands for drawing auxiliary elements is considered very significant for

ensuring the overall quality of a geometric illustration. It has been carefully designed in

order to make it possible to observe a variety of denotational styles and standards.

An example. Here follows an example of how PLATO can be used. Fig.1 shows a

description, the output of which can be seen on Fig. 2. The line numbers in Fig. 1 are

not part of the commands, but are given for reference only.

1: limits(0,0,50,70)

2: triangle(20,d:130,14,[30,30],0) - > -t[-A,-B,-C]

3: altitude(t,A) -> -p[-.,-A1]

4: altitude(t,B) -> -q[-.,-B1]

5: intersection(p,q) -> -H

6: segment(A,H) -> -p

7: segment(B,H) -> -q

8: colour(gray); linestyle(_,T)

9: circumscribed(A,B,A1) -> k1

10: circumscribed(H,C,A1) -> k2

11: colour(black); linestyle(_,N)

12: anglemark(A,A1,C,*))

13: anglemark(C,B1,B,*))

14: produce(t) -> .; produce(p) -> .; produce(q) -> .

15: linestyle(-,N); segment(C,A1) -> .; segment(C,B1) -> .

245



16: pointmark(o)

17: produce(A) -> .; produce(B) -> .; produce(C) -> .

18: letterstyle("Times-Italic",4)

19: label("A",A,WSW,6)

20: label("B",B,SE,3)

21: label("C",C,NW,3)

22: label("A_{1}",A1,W,8)

23: label("B_{1}",B1,ESE,4)

24: label("H",H,NW,3)

25: label("&{kappa}_{1}",k1.cen,SE,k1.rad+4)

26: label("&{kappa}_{2}",k2.cen,NE,k2.rad+2)

Fig.1

Here is a short explanation of how the description works. Line 1 defines a rectangular

area that will contain the entire drawing. Line 2 constructs a triangle, two sides of which

are 20mm and 14mm long, correspondingly, with an angle of 130◦ between them. One

vertex of the triangle has coordinates (30,30).

Once the triangle t is created, its three vertices are obtainable by the names t.A,

t.B and t.C (A, B and C are attribute names for a triangle), but, for convenience, we

introduce direct names to access those vertices: A for t.A etc.

Fig.2

The two altitudes p and q are found to intersect at point H. Note that p and q first

get bound in lines 3,4 (AA1 and BB1 on fig.2), and later (lines 6,7) are bound again to

AH and BH .

The circles κ1 and κ2 are displayed in gray colour, using a thin pen. They are drawn

first (although constructed last!), so as not to ‘erase’ any other part of the drawing.

Similarly, the (empty) circle pointmarks at points A, B and C are drawn last, so that

the marks remain clear.

At the very end (lines 18-26) the text denotations are placed. Each invocation of

the command label takes a labeling string, a reference point, a direction (such as N for

North, SE for South-East etc.) and a distance from the reference point in that direction

to place the label.

It is important to make difference between the identifiers that are used to name objects

246



within the description, and the labels placed in the drawing. Although they may look

like the same (this is intentionally done here for convenience), they are independent from

each other.

REFERENCES

[1] J. D. Hobby. A user’s manual for MetaPost. Bell Labs, Murray Hill, N.J., 1998.
[2]B. W. Kernighan. PIC – a language for typesetting graphics. Software — Practice and

Experience, 12, 1 (1982), 1-21.
[3] J. Van Wyk Ch. A graphics typesetting language. Proc. ACM SIGPLAN SIGOA Symp.
Text Manipulation, 1981.

Boyko B. Bantchev
Institute of Mathematics and Informatics
Acad. G. Bontchev str., bl.8
1113 Sofia
Bulgaria
e-mail: bantchev@math.bas.bg

ЕЗИК ЗА ГЕОМЕТРИЧНИ ИЛЮСТРАЦИИ

Бойко Бл. Банчев

Представяме описателен език за задаване на планиметрични илюстрации. Ези-

кът е подходящ за изразяване на широк клас от фигури, каквито типично се

срещат в училищните учебници по геометрия. Лесен е за използване и получа-

ващите се описания са ясни и с малък обем. Посредством реализиране на езика

чрез интерпретатор, превеждащ описанията на PostScript, илюстрациите могат

да бъдат възпроизвеждани самостоятелно или вграждани в документи в разно-

образни текстообработващи среди.

247


