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A unified approach for minimizing and maximizing a product of two affine functions
over a linear closed set is considered. No restrictions on the objective function and
the constraint set are required. Finite algorithms are proposed and implemented via
simplex method pivoting technique.

1. Introduction. We consider the linear multiplicative programming problem
LMP : minimize (maximize) F(z)= P(z)Q(z) subject to =z € Q,
where P(z) and Q(z) are affine functions and 2 € R™ is a closed linear set.

Recently, the interest in LMP increases, because of its applications in microelectron-
ics, bond portfolio optimization, bicriterial optimization and so forth. All researchers
focus their attention to the LMP for minimizing F(z) (see, e.g., [1-7] and the references
therein). The reason is, that usually it is supposed P(z) > 0 and Q(x) > 0 on . Then
the LMP for maximizing F'(x) could be solved by standard concave maximization tech-
niques, while the LMP for minimizing F'(z) is a nonconvex global minimization problem.
Different methods for finding a global minimum of LMP are proposed, many of them
intended to solve more general problems, that could be applied to LMP (see, e.g., [1, 3,
5]). We specially note Konno and Kuno ([2,4]) among those that develop algorithms ori-
ented directly to LMP, since they propose finite algorithms for finding a global minimum
of LMP. However, even they assume that €2 is bounded.

In this paper, we consider a unified approach (Section 2) to solve LMP in the case of
minimization and maximization, without any restrictions imposed on F(z) and Q. It is
based on the research in [8]. The proposed algorithms (Section 3) are finite and can be
implemented via parametric simplex method pivoting technique (Section 4).

2. Background. It is easy to see that LMP can be solved, if we can solve the
following two subproblems

LMP}, min {F(z) = P)Q(x) | z €y},
LMP}5, - s {F(0) = PQ() | € i)
where Q, ,={z € Q| P(z) > 0,Q(z) > 0}. Really, denote Q,_={z € Q| P(z) > 0,
Qz) <0}, Q4 ={z € Q| P(z) < 0,Q(z) > 0} and Q__ = {z € Q| P(z) <0,
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Qz) < 0}. An optimal solution of LMP is among the optimal solutions of the sub-
problems for minimizing (maximizing) F(z) over Qy4, Q4_, Q_; and Q__. However,
the optimization of F'(x) over the last three subsets can be obtained by solving one of
the subproblems LMPt and LMPt . For example, max{P(z)Q(z) | z € Q,_} =

min max*

min{ P(x)(~Q(x)) | P(z) > 0,~Q(z) > 0}.

The characteristics concerning LMP and LMP;LF, used here, are (see [8]):

min max

C1. F(z) is quasiconcave on 4 ;.

C2. F(x) attains its minimum over ;4 at a vertex of Q4. If F(z) is bounded
from above on {24, it attains its maximum on an edge of 4 ;.

C3. F(z) reaches its minimum (maximum) over Q4 at z*, iff there exists t* € [0, 1]
such that 2* = argmin(argmax) {L(z,t*) =(1 — t*)P(z) + t*Q(z)| = € Q44}.
The following sufficient condition also holds:

Theorem. Let | be an edge of Q4, on which the affine function L(z,t) =(1 —
t)P(x) + tQ(x) reaches its mazimum for some value of t € [0,1]. If F(x) # const on [,
z* € rint [ and * = argmax {F(x)| x € [ }, then 2* = argmaz {F(z)| = € Q44 }.

According to these characteristics, an optimal solution of LMP* and LMP} Y, can
be found by solving one-parametric linear problems:

LPpmin : min {L(z,t) = (1 —t)P(z) +tQ(z)| =z € Q4y, t€[0,1]},
LPmax : max {L(z,t) = (1 — t)P(z) +tQ(z)| =z € Qy, t€0,1]},
respectively. This idea is briefly discussed in section 3 and implemented in section 4 via
simplex-type technique. The algorithms in sections 3.1 and 3.2 are conventionally noted

as procedures with arguments P(x) and Q(z), in order to facilitate the description of the
general algorithms for solving LMP (Section 3.3).

3. Algorithms.

3.1. Procedure LMPI‘; (P(x), Q(x)). This procedure solves the problem LMP .
The idea is, as follows. F(z) attains its minimum at a vertex z* € Q. 4, for which there
exists t* € [0, 1], such that 2* = argmin {L(z,t*) = (1 —t*)P(z) + t*Q(x)| v € Q44+}
(see C2 and C3). We find ¢* by solving LP iy, increasing ¢ from 0 to 1. z* is among the
found optimal vertices (basic optimal solutions) of LP ip.

The algorithm starts with ¢ = 0, i.e. with the linear program min {L(z,0) = P(z)|z €

Q41 }. Let Q41 # 0. Q(x) will decrease at the next iterations and reach its minimum for

t=1: min {L(z,1) = Q(z)|z € Q44 }. Let [to = 0,t1], [t1,t2], -+ [ts,tst1 = 1] be the

sequence of intervals generated in the process of computations and 2%, z',---,2° be the

associated basic optimal solutions of LP,;,. Then * = argmin {F(:ck)| k=0,1,---,s }
++

is a basic optimal solution of LMP 7 .
3.2. Procedure LMPY (P(x), Q(x)). This procedure solves the problem LMP %

max max"*
The idea is, as follows. If F'(x) is bounded from above on Q4 1, then it attains its maxi-
mum over 2, on an edge of Q1 and every local maximum of F(z) is global (see C1
and C2). If z* is an optimal solution of LMP} T | then there exists t* € [0, 1], such that
x* = argmax {L(z,t*) = (1 —t*)P(z) + t*Q(x)| z € Q44} (see C3). We find t* by
solving LPyax, increasing ¢ € [0, 1].
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The algorithm starts with ¢ = 0, i.e. with the linear program max{L(z,0) =
P(z)] Az =b, x> 0}. Let Q4 # 0. Q(z) will increase at the next iterations and reach
its maximum (if F(z) is bounded from above on ;) when ¢t = 1: max {L(z,1) =
Q(z)|z € Q4y}. We perform the iterations just while F(z) also increases, i.e. untill
the edge containing z* is reached (¢ = t*). Consider the kth iteration (k > 0) in the
general case, when F'(x) is not an affine function, i.e. P(z) Zconst or/and Q(x) Zconst
on 4. Let z* be the optimal vertex of LPy.y, found for ¢ = t; and optimal for all
t € [tk,tr+1] C [0,1]. Denote by J¥ the index set corresponding to the nonbasic variables
of ¥ and by &/ (j € J%) a direction of the edge le Q. , which emanates from z* and
along which the nonbasic variable z; increases. The possible cases are:

— L(x,t;) — 400. Then F(z) is also unbounded from above on 4 4;

VTF (z%)d? < 0 for every j € J¥ N i.e. F(z) decreases along all edges, which emanate
from z* and belong to Q. Then z* is a basic optimal solution of LMP} (see C1);

— There exists 7 € J% such that VI F(2%)d" > 0. Denote by [, the edge connecting
z¥ with the next vertex z8t1 = 2% + 0d,. (6 > 0), optimal for t = t;,1. F(z) increases
along the edge [,.. We check whether an optimal solution of LMPT lies on [, using
a line search. Let p* = argmax {¢(u) = F(2* + pud.)| p > 0 }. If p* < 6, then
x* = 2% + p*d, € rint [, is an optimal solution of LMP{.f (see the Theorem). Note
that, because of the special kind of F(z), pu* is computed through a simple explicit
formula (see Section 4);

— None of these cases occurs. We go on with the next iteration.

3.3. Solving LMP. If we know that F(x) has a constant sign on 2, then the LMP
can be solved only by Procedure LMP}t or Procedure LMP' . In the general case,

max min*

the algorithms given below take into account:

max (x) Irlaux{wrerléai(+ (x), max ()} =a (@ < +ooor a=+o0),
(3.1)
in F(xr) = mi in F F(x > = -
min (z) mm{mg}gi (z), gnn ()} =B (B> —ocor B=—00),
QL UQ__ #0and Q- UQ_4 # 0, respectively. Otherwise,

if Q. UQ__ =0, then Q;_ =0 or/and Q_, =0,
if Q. UQ_y =0, then Q44 =0 or/and Q__ = 0.

Algorithm for solving LMP: min {F(z) = P(z)Q(z)| = € Q}.

(3.2)

I. Solve the problems

min {F(z) = P(z)Q(z)| z € 24—} by procedure LMP}Y (P(z), —Q(x)),
min {F(z) = P(z)Q(z)| x € Q_4} by procedure LMP}Y (—P(z),Q(x)).

fQy_UQ_4 =0, go to II. Otherwise, LMP is solved and min {F(z)| z € Q}
(see (3.1)). If B = —o0, then F(x) — —oo on €.

B

IT. Solve the problems
min {F(z) = P(z)Q(z)| © € 04y} by procedure LMP!F (P(z),Q(x)),

min

min {F(z) = P(z)Q(z)| € Q__} by procedure LMP}{{ (—P(z), -Q(z)).
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IfQy L UQ__ =0, then Q = (. Otherwise (see (3.2)),

min F(z) = min F(z) > —oco or minF(z) = min F(z) > —o0.
zeQ zeQ ¢ €N zeQ__

Algorithm for solving LMP: max {F(z) = P(z)Q(x)| =z € Q}

I. Solve the problems
max {F(z) = P(z)Q(z)| © € 44} by procedure LMP! Y (P(z),Q(x)),

max

max {F(z) = P(z)Q(z)| # € Q__} by procedure LMP} Y (—P(z), —Q(z)).

IfQpr UQ__ =0, go to II. Otherwise, LMP is solved and max{F(z)| x € Q} = «
(see (3.1)). If @ = +o0, then F(x) — +o00 on .

I1. Solve the problems
max {F(z) = P(z)Q(z)| # € Q._} by procedure LMP ! (P(z), —Q(z)),

max {F(z) = P(z)Q(z)| # € Q_4} by procedure LMP ! (—P(z),Q(z)).
IfQy_ UQ_4 =0, then Q = 0. Otherwise (see (3.2)),

max F(z) = max F(z) <+oo or maxF(z) = max F(z) < +o0.
z€Q €N z€eQ TEQ_4

4. Implementation. Here we apply a simplex-type technique to the algorithms in
sections 3.1 and 3.2 and deduce some formulas connected with them. For this purpose
we specify P(z) = pTz + po and Q(x) = ¢q7z + qo, and suppose that Q is given in
the standard form Q,, = {:E € R Az =0, x> 0}, where p = (p1,p2,--,0n)7,
q=(q1,q2,,q2)", po,qo € R*, b € R™, b >0, A € R™" m < n (by 0 is denoted a
zero vector).

To solve LP i, or LPp,.x means to find the intervals [tg = 0, ¢4], [t1, t2], < -+, [ts, ts+1 =
1] and the corresponding basic optimal solutions 2°, 2!, - - -, 2°, where 2% (k = 0,1,-- -, s)
is optimal for ¢ € [tg,tr4+1]. Consider the kth iteration. Let 2* be the current basic
optimal solution found for t = ¢;. Denote by B and N the corresponding basic and
nonbasic matrix, respectively. Let zp, pp and ¢p be the basic part of the vector x, p
and ¢, respectively, and zy, py and gy be the nonbasic part of z, p, q, respectively. Set
I={1,2,---,m}, J={1,2,---,n} and denote by J& = {s1,82, -+, 8} and J§ = J\ J&
the index set corresponding to the basic and nonbasic variables of z*, respectively. Let
rp + aXxy = B* be the presentation of the system Az = b regarding B, where of; =
BN = (afj)mx(n,m) (iel,jeJk), gk =Bt =(8F -, B5)T. We have 2%, =0,
ok = gk and

P(x) = po +pEB* + (pk — ppak)en =8 + djan,
Q(x) = qo + 4pf* + (a — gpai)zn = Af + ARy,

L(z,t) = (1—t)P(2)+tQ(z) = (1—t)0§+tAG+ [(1—t)65 +tAK Jan = of (t)+0oh (D),

where

& =po+ppbF =P@"), oy =py-Phok,
41)  Af  =aw+aps =Q@") AL =dy - dpok,
ob(t) = (1 —t)ok +tAE =Lz t), ok({t) = (1 —1t)sk +tAk.
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The basis of z* is optimal for all ¢ € [ty,t5+1] C [0, 1] that satisfy the system of inequal-
ities
(4.2) a’i(t) = (1—-t)ok +tAk >0, je J¥, in the case of LPpyn,
' oy (t) = (1 —t)6k +tA% <0, je Jg, in the case of LPyax.
Let lje Q4+ (j € J%) be an edge that emanates from z* and along which the nonbasic

r'n - Y

di, = —af; for s; € J, i € I and d =0 for h € J& \ {j}. Because of (4.1), we have

variable z; increases. Let &/ = (d{, -++,d?) be a direction of lj with components: dg =

(4.3) p'd =p; — Zpsiafj = 5;-“ and ¢"'d =q; — quiafj = A? for j e J¥,
i=1 i=1
gy = VIF(@")d = (Agp" +65q" )& = AGof + o5 A% > 0.
We pass to the next vertex 2**! choosing an edge lj, j € JX, as follows:

In the case of LPyin, Q(z) has to decrease along [, i.e. j € J* = {j € J} | A? < 0}.
If Jb = 0, then t5y1 = 1, i.e. LPpy, is solved and an optimal solution of LMPIJ;;; is
among the found basic optimal solutions of LP .

In the case of LPax, F(z) has to increase along [}, i.e j € J¥ = {j € J& | gf > 0}.
If af; <0forielandjeJf #0, then F(z) = 400 on Q. If J¥ =0, then 2% is a
basic optimal solution of LMP}t+.

max-*

If none of these cases occurs, we determine the maximal solution t¥+1 of (4.2) through

ok
—7JM| jeJk # (Z)} =t" in the case of LP iy,
J

41 = min{t? = 5
J

(4.4) 5
te+1 = min{t? = m| je Jf % (Z)} =t* in the case of LPpax

and obtain that [, is the edge leading to the next vertex xz**!, optimal for ¢ = t51:
2t = 2k + 64", where

pE B
(4.5) 0= min{ oy afr>0,iel}:—f€.
air alr
The known recurrent formulas connected with the basis of ¥+ are:
k+1 k+1 . .
l+ =4, BZ-"’ zﬁf—Hai?T, 1el, i #1,
k k
(6% (oA
k+1 l k+1 k lj k - . . ka1l
OéljJr :_]g]’aijJr :aij__]g]airalela Z#LJGJNJF
alr alr &
.
k+1 k+1 lj ok . k+1
(46) 50+ :5§+95f:P($k+1) 5j+ :(s?*a—k(sr, jGJNJr y

Ir
k
Q-
AR = AF +0AF = Q1Y) AML = Ak - AR e ghi
«

Ir
k+1 _ pk+1 k+1 _ pk+1 k+1 - .
xr+ _Bl ) $Sj_ —61 for SieJB ,’LGI,’L#Z,
x?+1=0 for je JEL

In the case of LP .y, before passing to 2¥+1, we perform the line search max {¢(u) =

F(z* + pud™)| > 0} in order to check whether F(z) attains its maximum over [, at an
259



interior point of .. Taking into account (4.1) and (4.3) for j = r, we obtain
p(p) = F@"+pd’) =[p"(@" + pd") + pollg” («* + pd") + qo
= (pTz* + po + pp"d") (¢"2* + qo + pgTd")
= (0§ + nog) (Af + nAY) = 0FAF + (AGOF + 35 AT) + p? 0P A

d
and # = AFSF + 08 AR 4 2udF AF = gF 4 2usF A¥ = 0, from where the solution is
m

_gk

4.7 = T

(4.7) W= S5E AR

If u* < 6, then 2* = 2* + p*d” € rint [, and z* is an nonbasic optimal solution of the
problem LMP+ . Otherwise, we pass to the vertex 2! and go on solving LPax.

max-*

4.1. Algorithm for solving LMP!:

min*

0. Set k = 0, to = 0 and solve the linear program LP;, for t = to. If Q44 = 0, go to

5. Otherwise, let 2° be the found basic optimal solution . The elements a?j, B2, 69

and 5? of 6% (i € I, j € J%) connected with z¥ are already computed. Calculate
now AY and A? for j € J% through (4.1) (k = 0) and set A? =0 for j € JY.
Check:

~If 69 = 0 for j € J}, then P(x) = 60 = P(«°) on Q4. If 0 = 0 then F(x) =0
on ., and 2° is an optimal solution of LMPH; — go to 5. Otherwise, solve the
linear program min {F(z) = 63Q(x)| z € 244} and go to 5;

~IfAY =0 for j € J}, then Q(z) = Af = Q(2°) on Q4. If A§ = 0 then F(z) =0
on 4, and 2° is an optimal solution of LMPH; — go to 5. Otherwise, solve the

linear program min {F(z) = AJP(z)| z € Q44 } and go to 5;
—Set 2* = 2% and F* = F(2°) = §JAY.

1. Form the set J* = {j € J§ | A¥ <0}. If J* =0, go to 4.

2. Pass to zF 1
— Calculate t? for j € JE and determine t;4; according to (4.4). Calculate
through (4.5). Set Jp™ = {z,} UJE\ {zs,} and JE™ = J\ JEFL
~ Caleulate o™ and B (i € I, j € J), 651, AGTY, 65T and ALY (5 €
JEFL) through (4.6). Set 5;?“ =0 and A?H =0 forj e JEt.

3. If F(a*t) = 6F TP AR < F* ) set F* = F(2**!) and 2* = 2**1 (the components of
xF*+1 are given by (4.6)). Set k:=k + 1 and go to 1.

4. z* is a basic optimal solution of LMPF and F(z*) = F*.

5. End.
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4.2. Algorithm for solving LMPt¥ :

max*

0. Set k = 0, to = 0 and solve the linear program LP .y for ¢t = to. If Q44 = (), then
go to 6. Otherwise, let 29 is the last found basic feasible solution. The elements
agj, BY, 69 and 5;-) of 6% (i € I, j € JY) connected with 20 are already computed.
Calculate now AJ and A? for j € J$ by using (4.1) (k = 0) and set A? = 0 for
j € J%. Check consecutively:

—If 5;-) =0 for j € JY, then P(z) =) = P(2°) on Q4. If 63 = 0 then F(z) =0
on Q4 and z° is a basic optimal solution of LMP — go to 6. Otherwise, solve
the linear program min {F(z) = 63Q(z)| z € Q44 } and go to 6.

— IfAY = 0 for j € J}, then Q(z) = AJ = Q(z°) on Q4. If A = 0 then F(z) =0
on ©Q,, and 2 is a basic optimal solution of LMPLJ;l — go to 6. Otherwise, solve
the linear program min {F(z) = AJP(x)| x € Q4 } and go to 6.

— There exists 67 > 0 (j € J§) and of; <0 for i € I, then P(x) — +00 on Q.

o
Hence F(x) — 400 on Q4. Go to 6.

If none of the cases above occurs, then z° is a basic optimal solution of LP ..

1. If there exists A¥ >0 (j € J§) and of; < 0 for i € I, then Q(x) — 400 on Q.
Hence, F(x) — 400 on Q44 — go to 6.

2. Calculate gf = A§6F + 65 A% for j € J§ and form the set J¥ = {j € J | g > 0}.
If J% =0, then 2* is a basic optimal solution of LMPE, and F(z*) = §§AL (the
components of z¥1 are given by (4.6)). Go to 6.

3 Calculate t? for j € J¥ and determine ¢4 according to (4.4). Calculate § through
(4.5).

4. Check for nonbasic optimal solution, as follows. Compute p* through (4.7). If p* >
6, go to 5. Otherwise z* = z¥ 4+ p*d" is an optimal solution of LMPt with
components

vl = BE—prak (s € Jhi€ D), wh=ut, @i =0 (e i\ {r).
Go to 6.

5. Pass to 2", as follows. Set Jr™' = {z,}UJE\ {2y, } and JE = J\ JEFL. Calculate
alth BT (i e, e I, 85t AR 65T and ASTY (j € JRT) through (4.6).
Set (5;-”1 =0 and A?H =0forje Jg“. Set k:=k+ 1 and go to 1.

6. End.
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AJITOPUTMMU 3A PEIIIABAHE HA 3AJTAYN HA JIMHEMHOTO
MVYJIITUIIJINKATUBHO OIITUMUWPAHE

Pymena Kantuncka, I'eopru Xpucros

Pasriiexk a ce euHeH MOIX0/] 32 MUHUMUI3UPAHE M MAKCUMU3UPAHe Ha MPOU3BEIeHIE
oT nBe aduHHN (DYHKIMY BbPXY 3aTBOPEHA JIMHETHA 00/1aCT, 663 OrpaHUYeHNs] BbPXY
neseBara GyHKIUs U obyactTa. Ilpeiokenn ca KpailHU aJITOPUTMU 3a PeIaBaHe
Ha IIOCTABEHHUTE 3aJ[adi, KOUTO Ce CBEXKJAT JI0 pelllaBaHe Ha 3a/[add Ha JIMHEITHOTO
ONITUMUPAHE C MAPAMETHD B IejIeBaTa (PYPKIUSI.
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