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A unified approach for minimizing and maximizing a product of two affine functions
over a linear closed set is considered. No restrictions on the objective function and
the constraint set are required. Finite algorithms are proposed and implemented via
simplex method pivoting technique.

1. Introduction. We consider the linear multiplicative programming problem

LMP : minimize (maximize) F (x) = P (x)Q(x) subject to x ∈ Ω,

where P (x) and Q(x) are affine functions and Ω ∈ Rn is a closed linear set.

Recently, the interest in LMP increases, because of its applications in microelectron-
ics, bond portfolio optimization, bicriterial optimization and so forth. All researchers
focus their attention to the LMP for minimizing F (x) (see, e.g., [1–7] and the references
therein). The reason is, that usually it is supposed P (x) ≥ 0 and Q(x) ≥ 0 on Ω. Then
the LMP for maximizing F (x) could be solved by standard concave maximization tech-
niques, while the LMP for minimizing F (x) is a nonconvex global minimization problem.
Different methods for finding a global minimum of LMP are proposed, many of them
intended to solve more general problems, that could be applied to LMP (see, e.g., [1, 3,
5]). We specially note Konno and Kuno ([2,4]) among those that develop algorithms ori-
ented directly to LMP, since they propose finite algorithms for finding a global minimum
of LMP. However, even they assume that Ω is bounded.

In this paper, we consider a unified approach (Section 2) to solve LMP in the case of
minimization and maximization, without any restrictions imposed on F (x) and Ω. It is
based on the research in [8]. The proposed algorithms (Section 3) are finite and can be
implemented via parametric simplex method pivoting technique (Section 4).

2. Background. It is easy to see that LMP can be solved, if we can solve the
following two subproblems

LMP++
min : min {F (x) = P (x)Q(x) | x ∈ Ω++},

LMP++
max : max {F (x) = P (x)Q(x) | x ∈ Ω++},

where Ω++=
{

x ∈ Ω| P (x) ≥ 0, Q(x) ≥ 0
}

. Really, denote Ω+−=
{

x ∈ Ω| P (x) ≥ 0,
Q(x) ≤ 0

}

, Ω−+ =
{

x ∈ Ω| P (x) ≤ 0, Q(x) ≥ 0
}

and Ω−− =
{

x ∈ Ω| P (x) ≤ 0,
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Q(x) ≤ 0
}

. An optimal solution of LMP is among the optimal solutions of the sub-
problems for minimizing (maximizing) F (x) over Ω++, Ω+−, Ω−+ and Ω−−. However,
the optimization of F (x) over the last three subsets can be obtained by solving one of
the subproblems LMP++

min and LMP++
max. For example, max{P (x)Q(x) | x ∈ Ω+−} =

min{P (x)(−Q(x)) | P (x) ≥ 0,−Q(x) ≥ 0}.
The characteristics concerning LMP++

min and LMP++
max used here, are (see [8]):

C1. F (x) is quasiconcave on Ω++.

C2. F (x) attains its minimum over Ω++ at a vertex of Ω++. If F (x) is bounded
from above on Ω++, it attains its maximum on an edge of Ω++.

C3. F (x) reaches its minimum (maximum) over Ω++ at x∗, iff there exists t∗ ∈ [0, 1]
such that x∗ = argmin(argmax)

{

L(x, t∗) =(1− t∗)P (x) + t∗Q(x)| x ∈ Ω++

}

.
The following sufficient condition also holds:

Theorem. Let l be an edge of Ω++, on which the affine function L(x, t) =(1 −
t)P (x) + tQ(x) reaches its maximum for some value of t ∈ [0, 1]. If F (x) 6≡ const on l,

x∗ ∈ rint l and x∗ = argmax {F (x)| x ∈ l }, then x∗ = argmax {F (x)| x ∈ Ω++}.

According to these characteristics, an optimal solution of LMP++
min and LMP++

max can
be found by solving one-parametric linear problems:

LPmin : min
{

L(x, t) = (1− t)P (x) + tQ(x)| x ∈ Ω++, t ∈ [0, 1]
}

,

LPmax : max
{

L(x, t) = (1− t)P (x) + tQ(x)| x ∈ Ω++, t ∈ [0, 1]
}

,

respectively. This idea is briefly discussed in section 3 and implemented in section 4 via
simplex-type technique. The algorithms in sections 3.1 and 3.2 are conventionally noted
as procedures with arguments P (x) and Q(x), in order to facilitate the description of the
general algorithms for solving LMP (Section 3.3).

3. Algorithms.
3.1. Procedure LMP++

min

(

P (x), Q(x)
)

. This procedure solves the problem LMP++
min.

The idea is, as follows. F (x) attains its minimum at a vertex x∗ ∈ Ω++, for which there
exists t∗ ∈ [0, 1], such that x∗ = argmin {L(x, t∗) = (1 − t∗)P (x) + t∗Q(x)| x ∈ Ω++}
(see C2 and C3). We find t∗ by solving LPmin, increasing t from 0 to 1. x∗ is among the
found optimal vertices (basic optimal solutions) of LPmin.

The algorithm starts with t = 0, i.e. with the linear programmin
{

L(x, 0) = P (x)|x ∈
Ω++

}

. Let Ω++ 6= ∅. Q(x) will decrease at the next iterations and reach its minimum for
t = 1: min

{

L(x, 1) = Q(x)|x ∈ Ω++

}

. Let [t0 = 0, t1], [t1, t2], · · ·, [ts, ts+1 = 1] be the
sequence of intervals generated in the process of computations and x0, x1, · · · , xs be the
associated basic optimal solutions of LPmin. Then x∗ = argmin

{

F (xk)| k = 0, 1, · · · , s
}

is a basic optimal solution of LMP++
min.

3.2. Procedure LMP++
max

(

P (x), Q(x)
)

. This procedure solves the problem LMP++
max.

The idea is, as follows. If F (x) is bounded from above on Ω++, then it attains its maxi-
mum over Ω++ on an edge of Ω++ and every local maximum of F (x) is global (see C1
and C2). If x∗ is an optimal solution of LMP++

max, then there exists t∗ ∈ [0, 1], such that
x∗ = argmax {L(x, t∗) = (1 − t∗)P (x) + t∗Q(x)| x ∈ Ω++} (see C3). We find t∗ by
solving LPmax, increasing t ∈ [0, 1].
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The algorithm starts with t = 0, i.e. with the linear program max
{

L(x, 0) =
P (x)| Ax = b, x ≥ 0

}

. Let Ω++ 6= ∅. Q(x) will increase at the next iterations and reach
its maximum (if F (x) is bounded from above on Ω++) when t = 1: max

{

L(x, 1) =
Q(x)|x ∈ Ω++

}

. We perform the iterations just while F (x) also increases, i.e. untill
the edge containing x∗ is reached (t = t∗). Consider the kth iteration (k ≥ 0) in the
general case, when F (x) is not an affine function, i.e. P (x) 6≡const or/and Q(x) 6≡const
on Ω++. Let xk be the optimal vertex of LPmax, found for t = tk and optimal for all
t ∈ [tk, tk+1] ⊂ [0, 1]. Denote by Jk

N the index set corresponding to the nonbasic variables
of xk and by dj (j ∈ Jk

N ) a direction of the edge lj⊂ Ω++, which emanates from xk and
along which the nonbasic variable xj increases. The possible cases are:

– L(x, tk) → +∞. Then F (x) is also unbounded from above on Ω++;

– ∇TF (xk)dj ≤ 0 for every j ∈ Jk
N , i.e. F (x) decreases along all edges, which emanate

from xk and belong to Ω++. Then xk is a basic optimal solution of LMP++
max (see C1);

– There exists r ∈ Jk
N such that ∇TF (xk)dr > 0. Denote by lr the edge connecting

xk with the next vertex xk+1 = xk + θdr (θ > 0), optimal for t = tk+1. F (x) increases
along the edge lr. We check whether an optimal solution of LMP++

max lies on lr, using
a line search. Let µ∗ = argmax {ϕ(µ) = F (xk + µdr)| µ ≥ 0 }. If µ∗ < θ, then
x∗ = xk + µ∗dr ∈ rint lr is an optimal solution of LMP++

max (see the Theorem). Note
that, because of the special kind of F (x), µ∗ is computed through a simple explicit
formula (see Section 4);

– None of these cases occurs. We go on with the next iteration.

3.3. Solving LMP. If we know that F (x) has a constant sign on Ω, then the LMP
can be solved only by Procedure LMP++

max or Procedure LMP++
min. In the general case,

the algorithms given below take into account:

max
x∈Ω

F (x) = max
{

max
x∈Ω++

F (x), max
x∈Ω

−−

F (x)
}

= α (α < +∞ or α = +∞),

min
x∈Ω

F (x) = min
{

min
x∈Ω+−

F (x), min
x∈Ω

−+

F (x)
}

= β (β > −∞ or β = −∞),
(3.1)

if Ω++ ∪Ω−− 6= ∅ and Ω+− ∪ Ω−+ 6= ∅, respectively. Otherwise,

if Ω++ ∪ Ω−− = ∅, then Ω+− = ∅ or/and Ω−+ = ∅,
if Ω+− ∪ Ω−+ = ∅, then Ω++ = ∅ or/and Ω−− = ∅.

(3.2)

Algorithm for solving LMP: min {F (x) = P (x)Q(x)| x ∈ Ω}.

I. Solve the problems

min {F (x) = P (x)Q(x)| x ∈ Ω+−} by procedure LMP++
max

(

P (x),−Q(x)
)

,

min {F (x) = P (x)Q(x)| x ∈ Ω−+} by procedure LMP++
max

(

−P (x), Q(x)
)

.

If Ω+− ∪Ω−+ = ∅, go to II. Otherwise, LMP is solved and min {F (x)| x ∈ Ω} = β

(see (3.1)). If β = −∞, then F (x) → −∞ on Ω.

II. Solve the problems

min {F (x) = P (x)Q(x)| x ∈ Ω++} by procedure LMP++
min

(

P (x), Q(x)
)

,

min {F (x) = P (x)Q(x)| x ∈ Ω−−} by procedure LMP++
min

(

−P (x),−Q(x)
)

.
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If Ω++ ∪ Ω−− = ∅, then Ω = ∅. Otherwise (see (3.2)),

min
x∈Ω

F (x) = min
x∈Ω++

F (x) > −∞ or min
x∈Ω

F (x) = min
x∈Ω

−−

F (x) > −∞.

Algorithm for solving LMP: max {F (x) = P (x)Q(x)| x ∈ Ω}

I. Solve the problems

max {F (x) = P (x)Q(x)| x ∈ Ω++} by procedure LMP++
max

(

P (x), Q(x)
)

,

max {F (x) = P (x)Q(x)| x ∈ Ω−−} by procedure LMP++
max

(

−P (x),−Q(x)
)

.

If Ω++ ∪Ω−− = ∅, go to II. Otherwise, LMP is solved and max{F (x)| x ∈ Ω} = α

(see (3.1)). If α = +∞, then F (x) → +∞ on Ω.

II. Solve the problems

max {F (x) = P (x)Q(x)| x ∈ Ω+−} by procedure LMP++
min

(

P (x),−Q(x)
)

,

max {F (x) = P (x)Q(x)| x ∈ Ω−+} by procedure LMP++
min

(

−P (x), Q(x)
)

.

If Ω+− ∪ Ω−+ = ∅, then Ω = ∅. Otherwise (see (3.2)),

max
x∈Ω

F (x) = max
x∈Ω+−

F (x) < +∞ or max
x∈Ω

F (x) = max
x∈Ω

−+

F (x) < +∞.

4. Implementation. Here we apply a simplex-type technique to the algorithms in
sections 3.1 and 3.2 and deduce some formulas connected with them. For this purpose
we specify P (x) = pTx + p0 and Q(x) = qTx + q0, and suppose that Ω++ is given in
the standard form Ω++ =

{

x ∈ Rn| Ax = b, x ≥ 0
}

, where p = (p1, p2, · · · , pn)T ,
q = (q1, q2, · · · , qn)T , p0, q0 ∈ R1, b ∈ Rm, b ≥0, A ∈ Rm×n, m < n (by 0 is denoted a
zero vector).

To solve LPmin or LPmax means to find the intervals [t0 = 0, t1], [t1, t2], · · ·, [ts, ts+1 =
1] and the corresponding basic optimal solutions x0, x1, · · ·, xs, where xk (k = 0, 1, · · · , s)
is optimal for t ∈ [tk, tk+1]. Consider the kth iteration. Let xk be the current basic
optimal solution found for t = tk. Denote by B and N the corresponding basic and
nonbasic matrix, respectively. Let xB, pB and qB be the basic part of the vector x, p
and q, respectively, and xN , pN and qN be the nonbasic part of x, p, q, respectively. Set
I = {1, 2, · · · ,m}, J = {1, 2, · · · , n} and denote by Jk

B = {s1, s2, · · · , sm} and Jk
N = J \Jk

B

the index set corresponding to the basic and nonbasic variables of xk, respectively. Let
xB + αk

NxN = βk be the presentation of the system Ax = b regarding B, where αk
N =

B−1N = (αk
ij)m×(n−m) (i ∈ I, j ∈ Jk

N ), βk = B−1b = (βk
1 , · · · , β

k
m)T . We have xk

N =0,

xk
B = βk and

P (x) = p0 + pTBβ
k + (pTN − pTBα

k
N )xN = δk0 + δkNxN ,

Q(x) = q0 + qTBβ
k + (qTN − qTBα

k
N )xN = ∆k

0 +∆k
NxN ,

L(x, t) = (1−t)P (x)+tQ(x) = (1−t)δk0+t∆k
0+

[

(1−t)δkN+t∆k
N

]

xN = σk
0 (t)+σk

N (t)xN ,
where

δk0 = p0 + pTBβ
k = P (xk), δkN = pTN − pTBα

k
N ,

∆k
0 = q0 + qTBβ

k = Q(xk) ∆k
N = qTN − qTBα

k
N ,

σk
0 (t) = (1 − t)δk0 + t∆k

0 = L(xk, t), σk
N (t) = (1− t)δkN + t∆k

N .

(4.1)
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The basis of xk is optimal for all t ∈ [tk, tk+1] ⊂ [0, 1] that satisfy the system of inequal-
ities

σk
j (t) = (1− t)δkN + t∆k

N ≥ 0, j ∈ Jk
N , in the case of LPmin,

σk
j (t) = (1− t)δkN + t∆k

N ≤ 0, j ∈ Jk
N , in the case of LPmax.

(4.2)

Let lj∈ Ω++ (j ∈ Jk
N ) be an edge that emanates from xk and along which the nonbasic

variable xj increases. Let d
j = (dj1, · · · , d

j
n) be a direction of lj with components: djj = 1,

djsi = −αk
ij for si ∈ Jk

B, i ∈ I and d
j
h = 0 for h ∈ Jk

N \ {j}. Because of (4.1), we have

pTdj = pj −
m
∑

i=1

psiα
k
ij = δkj and qT dj = qj −

m
∑

i=1

qsiα
k
ij = ∆k

j for j ∈ Jk
N ,(4.3)

gkj = ∇TF (xk)dj = (∆k
0p

T + δk0q
T )dj = ∆k

0δ
k
j + δk0∆

k
j > 0.

We pass to the next vertex xk+1 choosing an edge lj , j ∈ Jk
N , as follows:

In the case of LPmin, Q(x) has to decrease along lj , i.e. j ∈ Jk
−
= {j ∈ Jk

N | ∆k
j < 0}.

If Jk
−

= ∅, then tk+1 = 1, i.e. LPmin is solved and an optimal solution of LMP++
min is

among the found basic optimal solutions of LPmin.

In the case of LPmax, F (x) has to increase along lj , i.e j ∈ Jk
+ = {j ∈ Jk

N | gkj > 0}.

If αk
ij ≤ 0 for i ∈ I and j ∈ Jk

+ 6= ∅, then F (x) → +∞ on Ω++. If Jk
+ = ∅, then xk is a

basic optimal solution of LMP++
max.

If none of these cases occurs, we determine the maximal solution tk+1 of (4.2) through

tk+1 = min
{

tkj =
δkj

δkj −∆k
j

| j ∈ Jk
−
6= ∅

}

= tkr in the case of LPmin,

tk+1 = min
{

tkj =
δkj

δkj −∆k
j

| j ∈ Jk
+ 6= ∅

}

= tkr in the case of LPmax

(4.4)

and obtain that lr is the edge leading to the next vertex xk+1, optimal for t = tk+1:
xk+1 = xk + θdr, where

θ = min
{ βk

i

αk
ir

| αk
ir > 0, i ∈ I

}

=
βk
l

αk
lr

.(4.5)

The known recurrent formulas connected with the basis of xk+1 are:

βk+1
l = θ, βk+1

i = βk
i − θαk

ir , i ∈ I, i 6= l,

αk+1
lj =

αk
lj

αk
lr

, αk+1
ij = αk

ij −
αk
lj

αk
lr

αk
ir, i ∈ I, i 6= l, j ∈ Jk+1

N

δk+1
0 = δk0 + θδkr = P (xk+1) δk+1

j = δkj −
αk
lj

αk
lr

δkr , j ∈ Jk+1
N ,

∆k+1
0 = ∆k

0 + θ∆k
r = Q(xk+1) ∆k+1

j = ∆k
j −

αk
lj

αk
lr

∆k
r , j ∈ Jk+1

N .

xk+1
r = βk+1

l , xk+1
si

= βk+1
i for si ∈ Jk+1

B , i ∈ I, i 6= l,

xk+1
j = 0 for j ∈ Jk+1

N .

(4.6)

In the case of LPmax, before passing to xk+1, we perform the line search max {ϕ(µ) =
F (xk + µdr)| µ ≥ 0} in order to check whether F (x) attains its maximum over lr at an
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interior point of lr. Taking into account (4.1) and (4.3) for j = r, we obtain

ϕ(µ) = F (xk + µdr) = [pT (xk + µdr) + p0][q
T (xk + µdr) + q0]

= (pTxk + p0 + µpTdr)(qTxk + q0 + µqT dr)

= (δk0 + µδkr )(∆
k
0 + µ∆k

r ) = δk0∆
k
0 + µ(∆k

0δ
k
r + δk0∆

k
r ) + µ2δkr∆

k
r

and
dϕ(µ)

dµ
= ∆k

0δ
k
r + δk0∆

k
r + 2µδkr∆

k
r = gkr + 2µδkr∆

k
r = 0, from where the solution is

µ∗ =
−gkr

2δkr∆
k
r

.(4.7)

If µ∗ < θ, then x∗ = xk + µ∗dr ∈ rint lr and x∗ is an nonbasic optimal solution of the
problem LMP++

max. Otherwise, we pass to the vertex xk+1 and go on solving LPmax.

4.1. Algorithm for solving LMP++

min:

0. Set k = 0, t0 = 0 and solve the linear program LPmin for t = t0. If Ω++ = ∅, go to
5. Otherwise, let x0 be the found basic optimal solution . The elements α0

ij , β
0
i , δ

0
0

and δ0j of δ0N (i ∈ I, j ∈ J0
N ) connected with x0 are already computed. Calculate

now ∆0
0 and ∆0

j for j ∈ J0
N through (4.1) (k = 0) and set ∆0

j = 0 for j ∈ J0
B.

Check:

– If δ0j = 0 for j ∈ J0
N , then P (x) ≡ δ00 = P (x0) on Ω++. If δ00 = 0 then F (x) ≡ 0

on Ω++ and x0 is an optimal solution of LMP++
min – go to 5. Otherwise, solve the

linear program min {F (x) = δ00Q(x)| x ∈ Ω++} and go to 5;

– If ∆0
j = 0 for j ∈ J0

N , then Q(x) ≡ ∆0
0 = Q(x0) on Ω++. If ∆

0
0 = 0 then F (x) ≡ 0

on Ω++ and x0 is an optimal solution of LMP++
min – go to 5. Otherwise, solve the

linear program min {F (x) = ∆0
0P (x)| x ∈ Ω++} and go to 5;

– Set x∗ = x0 and F ∗ = F (x0) = δ00∆
0
0.

1. Form the set Jk
−
= {j ∈ Jk

N | ∆k
j < 0}. If Jk

−
= ∅, go to 4.

2. Pass to xk+1:

– Calculate tkj for j ∈ Jk
−

and determine tk+1 according to (4.4). Calculate θ

through (4.5). Set Jk+1
B = {xr} ∪ Jk

B \ {xsl} and Jk+1
N = J \ Jk+1

B .

– Calculate αk+1
ij and βk+1

i (i ∈ I, j ∈ Jk+1
N ), δk+1

0 , ∆k+1
0 , δk+1

j and ∆k+1
j (j ∈

Jk+1
N ) through (4.6). Set δk+1

j = 0 and ∆k+1
j = 0 for j ∈ Jk+1

B .

3. If F (xk+1) = δk+1
0 ∆k+1

0 < F ∗, set F ∗ = F (xk+1) and x∗ = xk+1 (the components of
xk+1 are given by (4.6)). Set k := k + 1 and go to 1.

4. x∗ is a basic optimal solution of LMP++
min and F (x∗) = F ∗.

5. End.
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4.2. Algorithm for solving LMP++
max

:

0. Set k = 0, t0 = 0 and solve the linear program LPmax for t = t0. If Ω++ = ∅, then
go to 6. Otherwise, let x0 is the last found basic feasible solution. The elements
α0
ij , β

0
i , δ

0
0 and δ0j of δ0N (i ∈ I, j ∈ J0

N ) connected with x0 are already computed.
Calculate now ∆0

0 and ∆0
j for j ∈ J0

N by using (4.1) (k = 0) and set ∆0
j = 0 for

j ∈ J0
B. Check consecutively:

– If δ0j = 0 for j ∈ J0
N , then P (x) ≡ δ00 = P (x0) on Ω++. If δ00 = 0 then F (x) ≡ 0

on Ω++ and x0 is a basic optimal solution of LMP++
min – go to 6. Otherwise, solve

the linear program min {F (x) = δ00Q(x)| x ∈ Ω++} and go to 6.

– If ∆0
j = 0 for j ∈ J0

N , then Q(x) ≡ ∆0
0 = Q(x0) on Ω++. If ∆

0
0 = 0 then F (x) ≡ 0

on Ω++ and x0 is a basic optimal solution of LMP++
min – go to 6. Otherwise, solve

the linear program min {F (x) = ∆0
0P (x)| x ∈ Ω++} and go to 6.

– There exists δ0j > 0 (j ∈ J0
N ) and α0

ij ≤ 0 for i ∈ I, then P (x) → +∞ on Ω++.
Hence F (x) → +∞ on Ω++. Go to 6.

If none of the cases above occurs, then x0 is a basic optimal solution of LPmax.

1. If there exists ∆k
j > 0 (j ∈ Jk

N ) and αk
ij ≤ 0 for i ∈ I, then Q(x) → +∞ on Ω++.

Hence, F (x) → +∞ on Ω++ – go to 6.

2. Calculate gkj = ∆k
0δ

k
j + δk0∆

k
j for j ∈ Jk

N and form the set Jk
+ = {j ∈ Jk

N | gkj > 0}.

If Jk
+ = ∅, then xk is a basic optimal solution of LMP++

max and F (xk) = δk0∆
k
0 (the

components of xk+1 are given by (4.6)). Go to 6.

3 Calculate tkj for j ∈ Jk
+ and determine tk+1 according to (4.4). Calculate θ through

(4.5).

4. Check for nonbasic optimal solution, as follows. Compute µ∗ through (4.7). If µ∗ ≥
θ, go to 5. Otherwise x∗ = xk + µ∗dr is an optimal solution of LMP++

max with
components

x∗

si
= βk

i − µ∗αk
ir (si ∈ Jk

B, i ∈ I), x∗

r = µ∗, x∗

j = 0 (j ∈ Jk
N \ {r}).

Go to 6.

5. Pass to xk+1, as follows. Set Jk+1
B = {xr}∪Jk

B \{xsl} and Jk+1
N = J \Jk+1

B . Calculate
αk+1
ij , βk+1

i (i ∈ I, j ∈ Jk+1
N ), δk+1

0 , ∆k+1
0 , δk+1

j and ∆k+1
j (j ∈ Jk+1

N ) through (4.6).

Set δk+1
j = 0 and ∆k+1

j = 0 for j ∈ Jk+1
B . Set k := k + 1 and go to 1.

6. End.
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АЛГОРИТМИ ЗА РЕШАВАНЕ НА ЗАДАЧИ НА ЛИНЕЙНОТО
МУЛТИПЛИКАТИВНО ОПТИМИРАНЕ

Румена Калтинска, Георги Христов

Разглежда се единен подход за минимизиране и максимизиране на произведение

от две афинни функции върху затворена линейна област, без ограничения върху

целевата функция и областта. Предложени са крайни алгоритми за решаване

на поставените задачи, които се свеждат до решаване на задачи на линейното

оптимиране с параметър в целевата фуркция.
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