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COMBINATORIAL PROBLEMS

Dimitar Petkov Jetchev

The purpose of this paper is to illustrate how some well-known facts from the linear
algebra have beautiful and non-trivial applications in solving a variety of combinato-
rial problems. Only a few facts from the systems of linear and homogenious equations
theory and Binnet-Cauchy formula are used. The clue to such problems is to describe
the whole situation with a matrix or a system of linear equations in order to obtain
the results by using linear algebraic theory. Not only these problems, but also many
others can be solved with such techniques.

1. Theory. In order to solve the problems below, we need some facts from linear
algebra.

1.1. Let us consider a system of n linear homogenious equations with n variables:
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∣

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0
...
an1x1 + an2x2 + · · ·+ annxn = 0

If the determinant is different from zero, then by Cramer’s rule there is a unique solution
of the system x1 = x2 = . . . = xn = 0. If detA = 0 then the system has infinitely many
solutions that can be described explicitely, when the matrix of the system has a rank
n − 1. In this case, the solutions are all n-tiples of the form (c1t, c2t, . . . , cnt), where
c1, c2, . . . , cn are given constants, at least one of which different from zero and t is an
arbitrary real number [1, 2].

1.2. If a system of linear homogenious equations contains more variables than equa-
tions, then there is a non-zero solution of this system [1, 2].

1.3. Binnet-Cauchy formula: If A is an arbitrary n × m matrix (m > n), then the
following equality holds

detAAT =
∑

B

(detB)2,

where the summation index run through all n× n submatrices B of A [3].

2. Applications. At first, we will consider one classical problem from the graph
theory.

Problem 1. (Cayley’s Formula [3]) Prove that the number of all trees on n points is
nn−2. (A graph is called a “tree”, when it is connected and has no cycles. Furthermore,
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if two such graphs are isomorphic, but their nodes are numerated differently, then they
are different.)

Consider the complete graph Kn and let us orient its edges in an arbitrary way.

Let m =
n(n− 1)

2
, v1, v2, . . . , vn be the points of the graph and e1, . . . , em – its edges.

We take the incidence point – edge matrix A = (aij), where i = 1, 2, . . . , n, and j =
1, 2, . . . .,m, such that aij = 1 if vi is a head of ej , aij = −1 if vi is a tail of ej, and
aij = 0 otherwise. Now remove the last row. Denote the remaining (n−1)×mmatrix by
A0. Consider all (n−1)×(n−1) submatrices B of A0. Each such submatrix corresponds
to a subgraph of Kn with n − 1 edges. We claim that detB = ±1, if this subgraph is a
tree (from now on, we do not take into account the orientation of the edges of a tree),
and detB = 0, otherwise.

Use induction by n. Let G be a subgraph, corresponding to the matrix B. Suppose
that there is a point vi (i < n), whose degree in G is 1. Expand the determinant by this
row. The remaining (n − 2)× (n− 2) determinant B′ corresponds to the graph G− vi.
It is clear that G is a tree in Kn, iff G− vi is a tree in Kn − vi, which is also a complete
graph. From this observation and from |detB| = |detB′|, we obtain the result in this
case.

Suppose that in G there is no point vi with degree 1. Notice that G is not a tree and
since the number of the edges of G is n− 1 of them, then it is easy to see that there is
a point among v1, v2, . . . , vn with a degree 0 in G. If this point is among the first n− 1,
then B contains a row, which has only zeros and therefore detB = 0. If vn = 0, then
each column of B has exactly one 1’s and one (−1)’s and after adding all other rows to
the first one, we obtain that detB = 0. The result follows.

Now, by Binnet-Cauchy formula we have detA0A
T
0 =

∑

B

(detB)2. Therefore, the num-

ber of the trees is detA0A
T
0 . It is easy to calculate the determinant. Firstly, we observe

that the product of the rows in B with numbers i and j is (−1) if i 6= j, and n − 1 if
i = j. Thus, the determinant is:
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n− 1 − 1 . . . − 1
−1 n− 1 . . . − 1
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...
−1 − 1 . . . n− 1
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1 1 . . . 1
0 n . . . 0
...
0 0 . . . n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= nn−2.

The last equation follows by adding all other rows to the first one and then adding the
first one to all the others. Thus, the number of trees over Kn is nn−2.

Problem 2. Consider a company of n (n ≥ 4) married couples. Sometimes, some of
them gather in a group in order to discuss something. It is known that every two persons
which were not wife and husband, were together in exactly one group. Moreover, no
married couple was in one and the same group. Prove that k ≥ 2n.

For clarity, consider n sets A1 = {a1, b1}, A2 = {a2, b2}, . . . , An = {an, bn}. Further-

more, let C1, C2, . . . , Ck be subsets of the set

n
⋃

i=1

Ai, for which each pair (ai, bj), (ai, aj)

or (bi, bj) belongs to exactly one of them, if i 6= j, and to none, if i = j. We have to
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prove that k ≥ 2n.

Assume that k < 2n. We assign every variable xi to ai, yi – to each bi and ti – to each
Ci. Consider the following linear homogenious system of k equations and 2n variables –
x1, y1, . . . , xn, yn.

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1 = 0
t2 = 0
...
tn = 0

By 1.2) and the assumption k < 2n it follows that this system has a non-zero solution.
Let d1, d2, . . . , dn and e1, e2, . . . , en be the number of sets which contain a1, a2, . . . , an
and b1, b2, . . . , bn respectively. It is clear that none of these numbers is 1, because of
the given conditions. If one of these numbers is 2 (say d1 = 2), then we observe that a1
is contained in exactly two sets (C1 and C2) with n− 1 elements each. But each element
from C1 must be in a pair with n−2 elements from C2 in some subset. Moreover, no two
different pairs can be in one and the same subset, since each non-married couple belongs
to exactly one subset. Hence

k ≥ (n− 1)(n− 2) + 2 ≥ 2n.

It suffices to consider the non-trivial case, when di ≥ 3 and ei ≥ 3 for all i. In this
case, using the given condition we may write

0 = t21 + . . .+ t2n = (d1x
2
1 + . . .+ dnx

2
n) + (e1y

2
1 + . . .+ eny

2
n) +

+
∑

i6=j

2(xiyj + xixj + yiyj) = (d1 − 1)x2
1 + . . .+ (dn − 1)x2

n +

+ (e1 − 1)y21 + . . .+ (en − 1)y2n +

(

n
∑

i=1

(xi + yi)

)2

−
n
∑

i=1

xiyi =

= (d1 − 2)x2
1 + . . .+ (dn − 2)x2

n + (e1 − 2)y21 + . . .+ (en − 2)y2n +

+

(

n
∑

i=1

(xi + yi)

)2

+

n
∑

i=1

(xi − yi)
2 > 0,

which is obviously a contradiction. Hence k ≥ 2n.

The clue of this problem is how to use in the best possible way the given condition
that each non-married couple belongs to exactly one subset. As one can see, the sum of
the squares of the numbers t1, . . . , tn includes the whole information.

Problem 3. Each side of a regular 2k-gon is colored either in white or in black. In
each step, a side, whose neighboring sides are in different colors, is colored white, and
each side with neighbors of one and the same color becomes black. Prove that after 2k−1

steps all the sides will be white, and that 2k−1 is the best possible.

Let us assign 0 (mod 2) to each white side and 1 (mod 2) to each black one. Moreover,
we number all the sides of the polygon with the integers from 1 to 2k. Thus, in each
moment, the current position may be described with a vector vi = (a1, a2, . . . , a2k). It is
clear that on the next step the vector vi+1 will be (a2k+a2, a1+a3, . . . , a2k−1+a1) where
all the numbers are taken (mod 2). We can write vi+1 ∼ (a2k+a2, a1+a3, . . . , a2k−1+a1).
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Consider the following 2k × 2k matrix:

A =











0 1 0 . . . 1
1 0 1 . . . 0
...

...
...

1 0 0 . . . 0











.

Then vi+1 ∼ viA. But A = M +M−1, where

M =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0















.

It is easy to see that:

v2k−1 ∼ v0(M +M−1)2
k−1

= v0





2
k−1

∑

i=0

(

2k−1

i

)

M2i−2
k−1



 .

According to the Lucas theorem,
(2k−1

i
)

is divisible by 2 when i = 1, . . . , 2k−1 − 1.

Furtermore, since M2
k

= E, then M2
k−1

= M−2
k−1

. In this way we obtain v2k−1 ∼
(0, 0, . . . , 0) which means that after the 2k−1-th step all the sides will be white. In order
to show that 2k−1 is the least possible integer, it suffices to consider (1,0,0,. . . ,0) as an
original vector.

Problem 4. 2n+ 1 real numbers are given, such that if among of these numbers is
removed, the others can be divided into 2 groups with n numbers in each and with equal
sums. Prove that all the numbers are equal.

Let us denote the given numbers by a1, . . . , a2n+1. We can write the conditions of
the problem as a system of linear homogenious equations with 2n+ 1 variables:

∣

∣

∣

∣

∣

∣

∣

∣

∣

0a1 + ǫ12a2 + . . .+ ǫ1,2n+1a2n+1 = 0
ǫ21a1 + 0a2 + . . .+ ǫ2,2n+1a2n+1 = 0
...
ǫ2n+1,1a1 + ǫ2n+1,2a2 + . . .+ 0a2n+1 = 0

where ǫij = ±1 and in each row there is exactly n 1’s and n (−1)’s.

Notice that the determinant of this system is 0, which can be proved by adding all
other columns to the first. We claim that the rank of the matrix of the system is 2n.
Consider the minor formed by the first 2n rows and the first 2n columns of the matrix.
Its determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ǫ12 . . . ǫ1,2n
ǫ21 0 . . . ǫ2,2n
...
ǫ2n,1 ǫ2n,2 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

This determinant is an odd number. We will show this by making the following
observation: The determinant is equivalent modulo 2 with the number of permutations
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P0 of 1, 2, . . . , 2n without any fixed point. This number can be calculated easily by the
inclusion-exclusion principle: if X is a subset of {1, 2, . . . , 2n} then the number PX of
those permutations for which the numbers from X are fixed points is (2n− |X |)!. By the
inclusion-exclusion principle:

P0 =
∑

X⊆{1,2,...,2n}

(−1)|X|PX =
∑

X⊆{1,2,...,2n}

(−1)|X|(2n− |X |)! =

=
2n
∑

k=0

(−1)k
(

2n

k

)

(2n− k)! =
2n
∑

k=0

(−1)k
2n!

k!
,

which is evidently an odd number.
Hence, the determinant of this minor is different from zero and it follows that the

rank of the matrix is 2n. From 1.1. the solutions are all 2n-tiples (c1t, c2t, . . . , c2n+1t)
where t is an arbitrary real number and c1, c2, . . . , c2n+1 are given constants. Since each
row of the matrix has n 1’s and n (−1)’s, then (t, t, . . . , t) is a solution. It follows that
c1 = c2 = . . . = c2n+1, which solves the problem.

A similar idea appears in the following problem:

Problem 5. Let p be a prime number and p + 1 real numbers be given with the
following property: if we remove an arbitrary number, the others can be divided into
several groups (at least two), such that the average mean of the numbers of each group
is one and the same. Prove that the numbers are equal.

Let a1, a2, . . . , ap+1 be the given numbers. It is clear that if c is an arbitrary real
number, then a1 − c, a2 − c, . . . , ap+1 − c have the same property as a1, a2, . . . , ap+1.
Therefore, we consider that the sum of the given numbers is 0. Let us remove, for
instance, the number ap+1. Then the other numbers can be divided into several groups,
such that the average means of the groups are equal. If m is the average mean of the

numbers of each group, then it is easy to see that
ap+1

p
= −m. Consider one of these

groups. If it contains k numbers: as1 , as2 , . . . , ask then, by considering a1, a2, . . . , ap+1

as variables we obtain the following linear homogenious equation:
1

k
as1 +

1

k
as2 + . . .+

1

k
ask −

1

p
ap+1 = 0.

Write a system of p+ 1 such equations (removing a1, . . . , ap+1 respectively). The deter-
minant is:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

p
c12 . . . c1,p+1

c21
1

p
. . . c2,p+1

...
cp+1,1 cp+1,2 . . . 1

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where cij = 0 or cij =
1

m
, where m < p. It is not difficult to see that D =

1

pp+1
+

M

Npl
,

where l < p. It follows that the determinant is not zero and hence, the system has only
the zero solution. Hence, the numbers a1, a2, . . . , ap+1 are equal.

4. Conclusion. The above examples illustrate the variety of applications of some
facts from linear algebra in combinatorial problems. These problems have other solu-
tions with the usage of some combinatorial observations or facts from the number theory.
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However, linear algebraic methods give clarity in the description of the situations and
may serve as an effective tool.
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НЯКОИ ПРИЛОЖЕНИЯ НА ЛИНЕЙНАТА АЛГЕБРА В
КОМБИНАТОРИКАТА

Димитър Петков Жечев

Целта на настоящия доклад е да илюстрира как някои фундаментелни твърдения

от линейната алгебра намират красиви и нетривиални приложения в множест-

во комбинаторни проблеми. За решаване на поставените примери се използват

някои факти от теорията на системите линейни хомогенни уравнения и форму-

лата на Бине-Коши. Основна насока в такива задачи е да се опише ситуацията

с матрица или система линейни уравнения с цел да се използват известни ре-

зултати. Не само разглежданите задачи, но и много други могат да се решат с

предложения подход.
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