МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2000 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2000 Proceedings of Twenty Ninth Spring Conference of the Union of Bulgarian Mathematicians Lovetch, April 3–6, 2000

CUBIC INTERSECTIONS BY MOVING PLANE

Albena Jordanova, Victoria Daneva

We investigate cubic intersections by moving plane, which depends on three parameters. For this we prove the main theorem and find the area function (Theorem 2). We show that the area function is a smooth function and differentiable once only. In many special cases this function has at least two points of maximum and four inflection points. For this purpose we also use computer-based methods. We recommend some special cases that can be used in school mathematics. In this

way one can integrate together plane geometry, solid geometry, algebra, analysis and computer science.

We consider a cube $ABCDA_1B_1C_1D_1$ with edge a, and a plane ε_{MNK} determined by: (1) $\overrightarrow{BM} = m\overrightarrow{BA}, \ \overrightarrow{BN} = n\overrightarrow{BC}, \ \overrightarrow{BK} = k\overrightarrow{BB_1}: \ m, n, k \in (-\infty, +\infty).$

This plane cuts the lines of the other edges at the points: P, S, T, U, V, W, X, Y, Z, given by the equations:

$$\overrightarrow{AT} = n \frac{m-1}{m} \overrightarrow{AD}, \quad \overrightarrow{CV} = m \frac{n-1}{n} \overrightarrow{CD}, \quad \overrightarrow{DY} = k \frac{mn-m-n}{mn} \overrightarrow{DD_1},$$

$$(2) \quad \overrightarrow{AS} = k \frac{m-1}{m} \overrightarrow{AA_1}, \quad \overrightarrow{B_1U} = m \frac{k-1}{k} \overrightarrow{B_1A_1}, \quad \overrightarrow{A_1Z} = n \frac{km-k-m}{km} \overrightarrow{A_1D_1},$$

$$\overrightarrow{CW} = k \frac{n-1}{n} \overrightarrow{CC_1}, \quad \overrightarrow{B_1X} = n \frac{k-1}{k} \overrightarrow{B_1C_1}, \quad \overrightarrow{C_1P} = m \frac{kn-k-n}{kn} \overrightarrow{C_1D_1}.$$

We shall give some short proofs of these relations:

The equality $\overline{BM'} = m\overline{BA'}$ is equivalent to the relation $\overline{BM} = m\overline{BA}$, where \overline{BM} and \overline{BA} are the algebraic measures respectively of $\overline{BM'}$ and $\overline{BA'}$.

In the same way one can prove all relations (2).

In this paper we consider the case m < 0, 0 < n < 1, k – arbitrary. There are two possible cases:

<u>Case 1:</u> The point T belongs to the edge AD (in such a case the point V does not belong to the edge DC).

<u>Case 2:</u> The point V belongs to the edge CD (in such a case the point T does not belong to the edge AD) (fig. 2).

Now we shall consider the first case, i.e. the point T is from the intersection of the cube and the plane ε . Then from the representation: $\overrightarrow{AT'} = n \frac{m-1}{m} \overrightarrow{AD'}$, it follows $0 < n \frac{m-1}{m} < 1$ which is equivalent to the inequality: mn - n - m > 0.

Lemma 1. The point T belongs to the section $\iff mn - n - m > 0$.

The relation: mn = n = m = 0 determines a hyperbole with vertices (0, 0) and (2, 2) and asymptotes m = 1 and n = 1 (Fig. 3).

One can easily see that we have in mind all points X(m, n) for which m < 0, 0 < n < 1and which are placed under the hyperbole (Fig. 3).

Let us designate $k_0 = \frac{mn}{mn - m - n}$.

Lemma 2. The following inequalities are valid: $k_0 < \frac{n}{n-1} < 0 < \frac{m}{m-1} < 1.$

The proofs follow directly.

A) Let $k < k_0$.

From the equations (2) it follows immediately that the point Y belongs to the ray $\leftarrow D_1 D$ (where the ray originating at the point D_1 and does not containing a point D is designated $\leftarrow D_1 D$) then the point Z is from the edge $A_1 D_1$ (Fig. 4).

B) Let $k < \frac{n}{n-1}$. From (2) $\Rightarrow W \in {}^{\leftarrow}C_1C \iff X \in B_1C_1$.

From A) and B) it follows:

Lemma 3. If $k \leq k_0$ the section is quadrilateral NXZT.

C) Let $k_0 < k < \frac{n}{n-1}$.

Then Y belongs to the edge DD_1 , consequently $Z \in {}^{\leftarrow}D_1A_1$ and $P \in D_1C_1$.

Lemma 4. If $k_0 < k < \frac{n}{n-1}$ the intersection is a pentagon NXPYT.

D) If $\frac{n}{n-1} \le k < 0$ then $W \in CC_1$ and $Y \in DD_1$.

Lemma 5. If $\frac{n}{n-1} \leq k < 0$, the section is quadrilateral NWYT.

E) If $0 < k \le \frac{m}{m-1}$, then from (2) it follows that S belongs to the edge AA_1 .

Lemma 6. If $0 < k \leq \frac{m}{m-1}$, the intersection is quadrilateral NKST.

F) If $k > \frac{m}{m-1}$, then $S \in {}^{\leftarrow}A_1A$. G) If $\frac{m}{m-1} < k < 1$. From (2) and F) it follows: $U \in A_1B_1, Z \in A_1D_1$. Lemma 7. If $\frac{m}{m-1} < k < 1$, the intersection is a pentagon NKUZT.

And finally let us $k \ge 1$.

H) If $k \ge 1$ then $X \in B_1C_1$ and $S \in {}^{\leftarrow}A_1A$.

Lemma 8. If $k \ge 1$, the section is quadrilateral NXZT.

Theorem 1(the main section theorem). For $k \neq 0$ the figure of the section depends on k and:

a) If $k \in (-\infty, k_0]$, the intersection is a quadrilateral NXZT; b) If $k \in \left(k_0, \frac{n}{n-1}\right)$, the intersection is a pentagon NXPYT; c) If $k \in \left[\frac{n}{n-1}, 0\right)$, the intersection is a quadrilateral NWYT; d) If $k \in \left(0, \frac{m}{m-1}\right]$, the intersection is a quadrilateral NKST; e) If $k \in \left(\frac{m}{m-1}, 1\right)$, the intersection is a pentagon NKUZT; f) If $k \in [1, +\infty)$, the section is a quadrilateral NXZT; Or shortly:

The following figures illustrate this theorem in some special cases: m = -2; $n = \frac{1}{2}$ then $k_0 = -2$, $\frac{n}{n-1} = -1$, $\frac{m}{m-1} = \frac{2}{3}$:

Theorem 2. For the area function $\sigma(k)$ holds:

$$\begin{aligned} \sigma_{1}(k) &= \sigma_{NXZT} = \frac{a^{2}}{km} \sqrt{k^{2}m^{2} + m^{2}n^{2} + n^{2}k^{2}}, \quad k \in (-\infty, k_{0}], \\ \sigma_{2}(k) &= \sigma_{NXPYT} = \frac{a^{2}}{2} \left(\frac{2}{km} - \left(\frac{kmn - km - kn - mn}{kmn} \right)^{2} \right) \sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}, \\ k \in \left(k_{0}, \frac{n}{n-1} \right), \\ \sigma_{3}(k) &= \sigma_{NWYT} = \frac{a^{2}}{2m^{2}n} (2mn - 2n - m) \sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}, \quad k \in \left[\frac{n}{n-1}, 0 \right), \\ \sigma_{4}(k) &= \sigma_{NKST} = \frac{a^{2}}{2m^{2}} (1 - 2m) \sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}, \quad k \in \left(0, \frac{m}{m-1} \right], \\ \sigma_{5}(k) &= \sigma_{NKUZT} = -\frac{a^{2}}{2m} \left(\frac{2}{k} + m \left(\frac{k-1}{k} \right)^{2} \right) \sqrt{k^{2}m^{2} + m^{2}n^{2} + n^{2}k^{2}}, \quad k \in \left(\frac{m}{m-1}, 1 \right), \\ \sigma_{6}(k) &= \sigma_{NXZT} = -\frac{a^{2}}{km} \sqrt{k^{2}m^{2} + m^{2}n^{2} + n^{2}k^{2}}, \quad k \in [1, +\infty). \end{aligned}$$

Proof. We use the formula $\sigma^1 = \sigma \cos \varphi$, where σ is the area of a plane polygon, σ^1 – the area of its orthogonal projection, and φ is the angle between the planes of the polygon and its projection.

Let us consider the plane trough BK and orthogonal to MN. From $\triangle MBN$ we have $\overline{BO.MN} = ma.na$, where $O \in MN$ and $BO \perp MN$, $\varphi = \gtrless BOK$. (Fig. 6) Since $\overline{MN} = a\sqrt{m^2 + n^2}$, it follows $\overline{BO} = -\frac{mna}{\sqrt{m^2 + n^2}}$ and $\cos \varphi = -\frac{mn}{\sqrt{m^2n^2 + k^2m^2 + k^2n^2}}$. To find the area σ_6 , let NX^1Z^1T be the projection of NXZT on the plane (ABC) (Fig. 7). Then $\sigma_6^1 = \sigma_{NTZ^1X^1} = a^2\frac{n}{k}$; $\sigma_6 = \sigma_{NXZT} = -\frac{a^2}{km}\sqrt{m^2n^2 + m^2k^2 + n^2k^2}$. In the same way one can prove all the formulae in (3).

Theorem 2. For any $k \neq 0$ the area function is a smooth function.

Theorem 3. For any $k \neq 0$ the area function is a differentiable function (exactly once).

By differentiating we get:

$$\begin{split} &\sigma_{1}^{(1)}(k) = -\frac{a^{2}mn^{2}}{k^{2}\sqrt{k^{2}m^{2} + k^{2}n^{2} + m^{2}n^{2}}};\\ &\sigma_{2}^{(1)}(k) = \frac{a^{2}}{k^{2}}\left(\frac{1}{n} + \frac{1}{k} - 1\right)\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}} + \\ &\quad + \frac{a^{2}}{2}\left(\frac{2}{km} - \left(1 - \frac{1}{m} - \frac{1}{n} - \frac{1}{k}\right)^{2}\right)\frac{k(m^{2} + n^{2})}{\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}};\\ &\sigma_{3}^{(1)}(k) = \frac{a^{2}k(m^{2} + n^{2})(2mn - 2m - n)}{2m^{2}n\sqrt{k^{2}m^{2} + k^{2}n^{2} + m^{2}n^{2}}};\\ &\sigma_{4}^{(1)}(k) = -\frac{a^{2}k(m^{2} + n^{2})(2m - 1)}{2m^{2}\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}};\\ &\sigma_{5}^{(1)}(k) = -\frac{a^{2}}{2m^{2}}\left[\left(-\frac{2}{k^{2}} + \frac{2m(k - 1)}{k^{3}}\right)\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}} + \\ &\quad + \left(2 + m\frac{(k - 1)^{2}}{k}\right)\frac{(m^{2} + n^{2})}{\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}}\right];\\ &\sigma_{6}^{(1)}(k) = \frac{a^{2}mn^{2}}{k^{2}\sqrt{m^{2}n^{2} + m^{2}k^{2} + n^{2}k^{2}}}. \end{split}$$

It if easy to prove that:

1) $\sigma_1^{(1)}(k) > 0$ for any $k \in (-\infty, k_0]$, i.e. $\sigma(k)$ is a monotone increasing function in this interval.

2) $\sigma_3^{(1)}(k) < 0$ for any $k \in \left[\frac{n}{n-1}, 0\right)$, i.e. $\sigma(k)$ is a monotone decreasing function in this interval.

3) $\sigma_4^{(1)}(k) > 0$ for any $k \in \left(0, \frac{m}{m-1}\right]$, i.e. $\sigma(k)$ is a monotone increasing function in

this interval. 4) $\sigma_6^{(1)}(k) > 0$ for any $k \in [1, +\infty)$, i.e. $\sigma(k)$ is a monotone decreasing function in this interval.

We prove also the following assertions:

I. $\sigma_2^{(1)}(k_0) > 0$, $\sigma_3^{(1)}\left(\frac{n}{n-1}\right) < 0$, it means that the area function has at least one local maximum in the interval $\left(k_0, \frac{n}{n-1}\right)$.

II. $\sigma_5^{(1)}\left(\frac{m}{m-1}\right) > 0, \, \sigma_6^{(1)} < 0$, it means that the area function has at least one local maximum in the interval $\left(\frac{m}{m-1}, 1\right)$. 284

Many special cases for m < 0 and 0 < n < 1 show that the area function has only one maximum in these intervals. For example:

Remark. The last two assertions are not valid when $m \to -\infty$. Indeed in such a case: $\lim_{m \to -\infty} k_0 = \frac{n}{n-1}$ and $\lim_{m \to -\infty} \frac{m}{m-1} = 1$, i.e. the intervals $\left(k_0, \frac{n}{n-1}\right)$ and $\left(\frac{m}{m-1}, 1\right)$ are degenerated and there are no functions $\sigma_2(k)$ and $\sigma_5(k)$. Then: $\lim_{k \to n_0, k < n_0} \sigma_1^{(1)}(k) = -\frac{a^2(n-1)^3}{n\sqrt{1+(n-1)^2}} > 0$, $\lim_{k \to n_0, k < n_0} \sigma_3^{(1)}(k) = \frac{a^2(n-1)}{n\sqrt{1+(n-1)^2}} < 0$, where $n_0 = \frac{n}{n-1}$. $\lim_{k \to 1, k < 1} \sigma_4^{(1)}(k) = \frac{a^2}{\sqrt{n^2+1}} > 0$, $\lim_{k \to 1, k > 1} \sigma_6^{(1)}(k) = -\frac{a^2(n-1)^2}{\sqrt{n^2+1}} < 0$. 285 It follows that the area function $\sigma(k)$ at the points $k = \frac{n}{n-1}$ and k = 1 is not differential.

From the last figure one can see that the area function has a minimum. This can be proved, namely: $\lim_{k\to 0,k<0} \sigma_3^{(1)}(k) = \lim_{k\to 0,k>0} \sigma_4^{(1)}(k)$, when *n* tends to $\frac{1}{2}$ and *m* tends to minus infinity.

REFERENCES

[1] G. STANILOV, L. STANILOVA, L. VELINOVA. Die besondere Stellung der Würfelschnitte, Seiten 578-581 in: Beiträge zum Mathematikunterricht 1998. Vorträge auf der 32. Tagung für Diddaktik der Mathematik vom 2. bis 6. 3. 1998 in München (1998).

[2] G. STANILOV, L. STANILOVA. Neue Max- Bill- Wûrfelschnitte und ihre Anwendungen in der bildenden Kunst, Seiten 501- 506 in: Beiträge zum Mathematikunterricht 1999. Vorträge auf der 33. Tagung für Diddaktik der Mathematik vom 1. bis 5. 3. 1999 in Bern (1999).

Albena Jordanova Botseva	Victoria Petrova Daneva
18 Secondary School	Classic College of Fine Mechanics and Optics
Sofia, Bulgaria	Sofia, Bulgaria
e-mail::Albena_jordanova@mailcity.com	L

КУБИЧНИ СЕЧЕНИЯ С ПОДВИЖНА РАВНИНА

Албена Йорданова, Виктория Данева

Разглеждаме сеченията на куб с подвижна равнина, зависеща от три параметъра. Доказваме главната теорема за сеченията и намираме функцията лице на сечението (Теорема 2). Показваме, че функцията лице е непрекъсната и диференцируема (от първи ред). В много разгледани частни случаи, с помощта на компютърно базирани методи, сме установили, че тази функция има поне два максимума и четири инфлексни точки.

Смятаме, че някои частни случаи могат да бъдат разгледани в часовете по математика в училище.