IMPROVEMENT OF GRAPH THEORY WEI’S INEQUALITY

Nedyalko D. Nenov

Wei in [8] and [9] discovered a bound on the clique number of a given graph in terms of its degree sequence. In this note we give an improvement of this result.

We consider only finite non-oriented graphs without loops and multiple edges. A set of \(p \) vertices of a graph is called a \(p \)-clique if each two of them are adjacent. The greatest positive integer \(p \) for which \(G \) has a \(p \)-clique is called clique number of \(G \) and is denoted by \(\text{cl}(G) \). A set of vertices of a graph is independent if the vertices are pairwise nonadjacent. The independence number \(\alpha(G) \) of a graph \(G \) is the cardinality of a largest independent set of \(G \).

In this note we shall use the following notations:

- \(V(G) \) is the vertex set of graph \(G \);
- \(N(v), v \in V(G) \) is the set of all vertices of \(G \) adjacent to \(v \);
- \(N(V), V \subseteq V(G) \) is the set \(\bigcap_{v \in V} N(v) \);
- \(d(v), v \in V(G) \) is the degree of the vertex \(v \), i.e. \(d(v) = |N(v)| \).

Let \(G \) be a graph, \(|V(G)| = n \) and \(V \subseteq V(G) \). We define

\[
W(V) = \sum_{v \in V} \frac{1}{n - d(v)}; \\
W(G) = W(V(G)).
\]

Wei in [8] and [9] discovered the inequality

\[
\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{1 + d(v)}.
\]

Applying this inequality to the complementary graph of \(G \) we see that it is equivalent to the following inequality

\[
\text{cl}(G) \geq \sum_{v \in V(G)} \frac{1}{n - d(v)},
\]

*Key words: clique number, degree sequence

\textbf{2000 Mathematics Subject Classification:} 05C35
that is

\[\text{cl}(G) \geq W(G). \]

Alon and Spencer [1] gave an elegant probabilistic proof of Wei’s inequality. In the present note we shall improve the inequality (1).

Definition 1. Let \(G \) be a graph, \(|V(G)| = n\) and \(V \subseteq V(G) \). The set \(V \) is called a \(\delta \)-set in \(G \), if

\[d(v) \leq n - |V| \]

for all \(v \in V \).

Example 1. Any independent set \(V \) of vertices of a graph \(G \) is a \(\delta \)-set in \(G \) since \(N(v) \subseteq V(G) \setminus V \) for all \(v \in V \).

Example 2. Let \(V \subseteq V(G) \) and \(|V| \geq \max\{d(v), v \in V(G)\} \). Since \(d(v) \leq |V| \) for all \(v \in V(G), V(G) \setminus V \), is a \(\delta \)-set in \(G \).

The next statement obviously follows from Definition 1.

Proposition 1. Let \(V \) be a \(\delta \)-set in a graph \(G \). Then \(W(V) \leq 1 \).

Definition 2. A graph \(G \) is called an \(r \)-partite graph if

\[V(G) = V_1 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j, \]

where the sets \(V_i, i = 1, \ldots, r \), are independent. If the sets \(V_i, i = 1, \ldots, r \), are \(\delta \)-sets in \(G \), then \(G \) is called generalized \(r \)-partite graph. The smallest integer \(r \) such that \(G \) is a generalized \(r \)-partite graph is denoted by \(\varphi(G) \).

Proposition 2. \(\varphi(G) \geq W(G) \).

Proof. Let \(\varphi(G) = r \) and

\[V(G) = V_1 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j, \]

where \(V_i, i = 1, \ldots, r \), are \(\delta \)-sets in \(G \). Since \(V_i \cap V_j = \emptyset, i \neq j \), we have

\[W(G) = \sum_{i=1}^{r} W(V_i). \]

According to Proposition 1, \(W(V_i) \leq 1, i = 1, \ldots, r \). Thus \(W(G) \leq r = \varphi(G) \).

Below (see Theorem 1) we shall prove that \(\text{cl}(G) \geq \varphi(G) \). Thus (1) follows from Proposition 2.

Definition 3 [2]. Let \(G \) be a graph and \(v_1, \ldots, v_r \in V(G) \). The sequence \(v_1, \ldots, v_r \) is called an \(\alpha \)-sequence in \(G \) if the following conditions are satisfied:

(i) \(d(v_1) = \max\{d(v) \mid v \in V(G)\} \);

(ii) \(v_i \in N(v_1, \ldots, v_{i-1}) \) and \(v_i \) has maximal degree in the graph \(G[N(v_1, \ldots, v_{i-1})] \), \(2 \leq i \leq r \).
Every α-sequence \(v_1, \ldots, v_r \) in the graph \(G \) can be extended to an α-sequence \(v_1, \ldots, v_s, \ldots, v_r \) such that \(N(v_1, \ldots, v_{r-1}) \) is a δ-set in \(G \). Indeed, if the α-sequence \(v_1, \ldots, v_s, \ldots, v_r \) is such that it is not contained in a \((r + 1)\)-clique (i.e. \(v_1, \ldots, v_s, \ldots, v_r \) is a maximal α-sequence in the sense of inclusion) then \(N(v_1, \ldots, v_{r-1}) \) is an independent set and, therefore, a δ-set in \(G \). However, there are α-sequences \(v_1, \ldots, v_r \) such that \(N(v_1, \ldots, v_{r-1}) \) is a δ-set but it is not an independent set.

Theorem 1. Let \(G \) be a graph and \(v_1, \ldots, v_r, r \geq 2 \), be an α-sequence in \(G \) such that \(N(v_1, \ldots, v_{r-1}) \) is a δ-set in \(G \). Then

(a) \(\varphi(G) \leq r \leq \text{cl}(G) \);

(b) \(r \geq \text{W}(G) \).

Proof. According to Definition 3, \(v_1, \ldots, v_r \) is an r-clique and thus \(r \leq \text{cl}(G) \). Since \(N(v_1, \ldots, v_{r-1}) \) is a δ-set, the graph \(G \) is a generalized r-partite graph, \([6] \). Hence \(r \geq \varphi(G) \). The inequality (b) follows from (a) and Proposition 2.

Remark. Theorem 1 (b) was proved in \([7] \) in the special case when \(N(v_1, \ldots, v_{r-1}) \) is independent set in \(G \).

Definition 4. Let \(G \) be a graph and \(v_1, \ldots, v_r \in V(G) \). The sequence \(v_1, \ldots, v_r \) is called β-sequence in \(G \) if the following conditions are satisfied:

(i) \(d(v_1) = \max\{d(v) \mid v \in V(G)\} \);

(ii) \(v_i \in N(v_1, \ldots, v_{i-1}) \) and \(d(v_i) = \max\{d(v) \mid v \in N(v_1, \ldots, v_{r-1})\} \), \(2 \leq i \leq r \).

Theorem 2. Let \(v_1, \ldots, v_r \) be a β-sequence in a graph \(G \) such that

\[
d(v_1) + \cdots + d(v_r) \leq (r-1)n,
\]

where \(n = |V(G)| \). Then \(r \geq \text{W}(G) \).

Proof. According to \([5] \), it follows from \(d(v_1) + \cdots + d(v_r) \leq (r-1)n \), that \(G \) is a generalized r-partite graph. Hence \(r \geq \varphi(G) \) and Theorem 2 follows from Proposition 2.

Corollary. Let \(G \) be a graph, \(|V(G)| = n \) and \(v_1, \ldots, v_r \) be a β-sequence in \(G \) which is not contained in \((r + 1)\)-clique. Then \(r \geq \text{W}(G) \).

Proof. Since \(v_1, \ldots, v_r \) is not contained in \((r + 1)\)-clique it follows that \(d(v_1) + \cdots + d(v_r) \leq (r-1)n \), \([3] \).

Theorem 3. Let \(G \) be a graph, \(|V(G)| = n \) and \(v_1, \ldots, v_r, r \geq 2 \), be a β-sequence in \(G \) such that \(N(v_1, \ldots, v_{r-1}) \) is a δ-set in \(G \). Then \(r \geq \text{W}(G) \).

Proof. Since \(N(v_1, \ldots, v_{r-1}) \) is a δ-set according to \([6] \) there exists an r-partition

\[
V(G) = V_1 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j,
\]

where \(V_i, i = 1, \ldots, r \), are δ-sets and \(v_i \in V_i \). Thus, we have

\[
d(v_i) \leq n - |V_i|, \quad i = 1, \ldots, r.
\]

Summing up these inequalities we obtain that \(d(v_1) + \cdots + d(v_r) \leq (r-1)n \). Therefore Theorem 3 follows from Theorem 2.
REFERENCES

Nedyalko Dimov Nenov
Faculty of Mathematics and Informatics
St Kliment Ohridski University of Sofia
5, James Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: nenov@fmi.uni-sofia.bg

ПОДОБРЕНИЕ НА НЕРАВЕНСВОТО НА WEI ОТ ТЕОРИЯ НА ГРАФИТЕ

Недялко Д. Ненов