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In this paper receptor-basedCellular Neural Network model is considered.Dynamics
and stabilit y of such model are studied by applying describing function technique.
Comparison of the obtained results with the classical ones is made as well.

1. In tro duction to Cellular Neural Net works (CNNs). Spatial and spatio-
temporal patterns occur widely in physics, chemistry and biology. In many cases,they
seemto be generatedspontaneously. These phenomenahave motivated a great deal of
mathematical modelling and the analysis of the resultant systemshas led to a greater
understanding of the underlaying mechanisms.Partial di�eren tial equations of di�usion
type have long served as models for regulatory feedbacks and pattern formation in
aggregatesin living cells. In this work we propose receptor-basedmodels for pattern
formation and regulation in multicellar biological systems.The systemsdescribing our
models are composed of both di�usion-t ype and ordinary di�eren tial equations. Such
systemscausesome di�culties, since both existenceand behavior of the solutions are
more di�cult to establish. Many aspects of qualitativ e behavior have to be investigated
numerically. For this purpose,we apply the Cellular Neural Networks (CNN) approach
for studying such models.

CNN is simply an analoguedynamic processorarray, madeof cellswhich contain linear
capacitors, linear resistorsand linear and nonlinear controlled sources.Let us considera
two-dimensionalgrid with 3 � 3 neighborhood system as it is shown on Fig.1.

The squaresare the circuit units-cells, and the links between the cells indicate that
there are interactions between linked cells. One of the key features of a CNN is that
the individual cells are nonlinear dynamical systems,but the coupling between them is
linear. Roughly speaking, onecould say that thesearrays are nonlinear but have a linear
spatial structure which makes the use of techniques for their investigation common in
engineeringor physics attractiv e.

We will give the generalde�nition of a CNN which follows the original one:

* 2000 Mathematics Sub ject Classi�cation: 92B20, 35B10, 68W35.
Key words: cellular neural networks, receptor-based model, describing function method.
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Fig. 1. 3 � 3 neighborhood CNN.

De�nition 1. The CNN is a
a) 2-, 3-, or n-dimensional array of
b) mainly identical dynamical systems,called cells, which satisfy two properties:
c) most interactions are local within a �nite radius r , and
d) all state variables are continuous valued signals.

De�nition 2. An M � M cellular neural network is de�ned mathematically by four
speci�c ations:

1) CNN cell dynamics;
2) CNN synaptic law which representsthe interactions (spatial coupling) within the

neighbor cells;
3) Boundary conditions;
4) Initial conditions.

Suppose for simplicit y that the processingelements of a CNN are arranged on a
2-dimensional (2-D) grid (Fig. 1). Then, the dynamics of a CNN, in general, can be
described by:

_x ij (t) = � x ij (t) +
X

C (k ;l )2 N r ( i;j )

~A ij;k l (yk l (t); yij (t)) +(1)

+
X

C (k ;l )2 N r ( i;j )

~B ij;k l (uk l ; uij ) + I ij ;

(2) yij (t) = f (x ij );

1 � i � M ; 1 � j � M ;

x ij ; yij ; uij refer to the state, output and input voltage of a cell C(i; j ); C(i; j ) refers to
a grid point associated with a cell on the 2-D grid, C(k; l ) 2 N r (i; j ) is a grid point (cell)
in the neighborhood within a radius r of the cell C(i; j ), I ij is an independent current
source. ~A and ~B are nonlinear cloning templates which specify the interactions between
each cell and all its neighbor cells in terms of their input, state, and output variables.
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Moreover, as we mentioned above the cloning template has geometrical meaningswhich
can be exploited to provide us with geometric insights and simpler designmethods.

Now, in terms of de�nition 2 we can present the dynamical systemsdescribingCNNs.
For a general CNN whose cells are made of time-invariant circuit elements, each cell
C(ij ) is characterized by its CNN cell dynamics

(3) _x ij = � g(x ij ; uij ; I s
ij );

where x ij 2 R m and uij is usually a scalar. In most cases,the interactions (spatial
coupling) with the neighbor cell C(i + k; j + l ) are speci�ed by a CNN synaptic law:

I s
ij = A ij;k l x i + k ;j + l + ~A ij;k l � f k l (x ij ; x i + k ;j + l ) + ~B ij;k l � ui + k ;j + l (t):(4)

The �rst term A ij;k l x i + k ;j + l of (4) is simply a linear feedback of the states of the
neighborhood nodes.The secondterm provides an arbitrary nonlinear coupling, and the
third term accounts for the contributions from the external inputs of each neighbor cell
that is located in the N r neighborhood.

2. Reaction-di�usion CNNs. It is known that someautonomousCNNs represent
an excellent approximation to nonlinear partial di�eren tial equations (PDEs). In this
paper we present the receptor-basedmodel by a reaction-di�usion CNNs. The intrinsic
spacedistributed topologymakesthe CNN ableto producereal-time solutionsof nonlinear
PDEs. Consider the following well-known PDE, generally referred to us in the literature
as a reaction-di�usion equation:

@u
@t

= f (u) + Dr 2u;

where u 2 R N and f 2 R N , D is a matrix with the di�usion coe�cien ts, and r 2u is the
Laplacian operator in R 2. There are several ways to approximate the Laplacian operator
in discrete spaceby a CNN synaptic law with an appropriate A-template.

As a �rst example of CNN models we consider the Fisher equation. Sixty yearsago
Fisher showed that the propagation of a mutant gene can be modeled by a nonlinear
reaction-di�usion partial di�eren tial equation (PDE):

(5)
@u
@t

= D
@2u
@x2 + f (u):

where f (u) = qu(1 � u). This classicequation, also known as the �di�usional logistic�
equation, has been found to be useful in many other applications and has been widely
studied. In chemical media the function u(t; x) is the concentration of the reactant, D
represents its di�usion coe�cien t, and the positive constant q speci�es the rate of the
chemical reaction. In media of other natures u; D ; q can represent di�eren t quantities.
In general, medium described by (5) is often refered to as a bistable medium, because
it has two homogeneousstationary states: u = 0 and u = 1. Observe the casewhen
f (u) = u(u � 1)(u � E ) in which f (u) has three zeros:at u = 0; E and 1. This generalized
model arises in many areas of ecology, including selection-migration models and other
bistable population models. It is also found in a degenerateform of Nagumo's equation.

After rescaling the time t0 = qt and spacecoordinate x0 = (q=D)1=2x, and dropping
the prime, in one-dimensionalspace(5) becomes:

(6) ut = uxx + u(1 � u):

As we mentioned, Fisher equation (6) can be precented by a reaction-di�usion auto-
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nomousCNN where the cells are a degeneratespecial caseof Chua's oscillator. We will
map u(x; t) into a CNN layer such that the state voltage of a CNN cell xk l (t) at a grid
point (k; l ) is associated with u(kh; t), h = � x. Therefore, an one-dimensionalLaplacian
template is of the following form:

A1 = (1; � 2; 1);

and the CNN model in this caseis:

(7)
duk

dt
= (uk � 1 � 2uk + uk+1 ) + uk (1 � uk );

k = 1; : : : ; n, n = M :M , where we have M � M cells.

In a two-dimensional isotropic medium Fisher's equation (5) in rescaledvariables is:

(8) ut = uxx + uyy + u(1 � u):

The solution u(x; y; t) of (8) is a continuousfunction of the time t and the spacevariables
x, y. We shall approximate the function u(x; y; t) by a set of functions uj k (t) which are
de�ned as

uj k (t) = u(j hx ; khy ; t);

wherehx and hy are the spaceintervals in the x and y coordinates.Then, two-dimensional
discretized Laplacian A template takesthe following form:

A2 =

0

@
0 1 0
1 � 4 1
0 1 0

1

A :

The CNN model for two-dimensionalFisher's equation (8) is:
duj k

dt
= (uj k � 1(t) + uj k+1 (t) � 4uj k (t) + uj � 1k (t) + uj +1 k (t))(9)

+ uj k (t)(1 � uj k (t)) = (uj k � 1(t) + uj k+1 (t) � 4uj k (t)

+ uj � 1k (t)uj +1 k (t)) + n j k (t);

1 � j � M , 1 � k � M .

Another most widely studied nonlinear reaction-di�usion partial di�eren tial equation
(PDE) is the Brusselator equation, whosedimensionlessequation is:

@u
@t

= a � (b+ 1)u + u2v + D1r 2u(10)

@v
@t

= bu� u2v + D2r 2v;

wherer 2 =
@2

@u2 +
@2

@v2 is a two-dimensionalLaplacian operator in R 2, a, barecoe�cien ts

of the chemical reaction which give the concentration of initial substancesand D 1, D2 are
di�usion coe�cien ts. The Brusselator equation (10) is well known in chemical kinetics as
an ideal systemfor studying the dissipative structures. In somesensethis systembehaves
as harmonic oscillator.

Our CNN model for the Brusselator equation (10) with A2-template can be written
in the following form:
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uj k = a � (b+ 1)uj k + u2
j k vj k + D1[uj +1 k + uj � 1k + uj k+1 + uj k � 1 � 4uj k ](11)

vj k = buj k � u2
j k vj k + D2[vj +1 k + vj � 1k + vj k+1 + vj k � 1 � 4vj k ];

1 � j � M , 1 � k � M .
The other model we consider is a more general form of the Hodgkin-Huxley model

for the propagation of the voltage pulse through a nerve axon which is referred to as the
FitzHugh-Nagumo equation:

(12) ut � uxx = u(u � �)(1 � u) � b
Z t

0
u(s; x)ds;

0 < x; t < 1, 0 < � < 1=2, b � 0. The proposedequation (12) is a nonlinear parabolic
integro-di�eren tial equation, in which ut is the �rst partial derivative of u(t; x) with
respect to t, uxx is the secondderivative of u with respect to x and u is a membrain
potential in a nerve axon. The steady state u = 0 represents the resting state of the
nerve.

Now, if we map u(x; t) into a CNN layer such that the state voltage of a CNN
cell vxk l (t) at a grid point (k; l ) is associated with u(kh; t), h = � x and use the one-
dimensional discretized Laplacian template A1, then it is easyto designthe CNN model
of the proposedFitzHugh-Nagumo equation (12):

(1) CNN cell dynamics:

(13)
duj

dt
� I s

j = uj (uj � �)(1 � uj ) � b
Z t

0
uj (s)ds:

(2) CNN synaptic law:

(14) I s
j =

1
h2 (uj � 1 � 2uj + uj +1 ):

Let us assumefor simplicit y that the grid size of our CNN model is h = 1 and let
us denote the nonlinearity n(uj ) = uj (uj � �)(1 � uj ). Substituting (14) into (13), we
obtain:

duj

dt
� (uj � 1 � 2uj + uj +1 ) = n(uj ) � b

Z t

0
uj (s)ds;1 � j � N :(15)

Equation (15) is actually an integro-di�eren tial equation which is identi�ed as the
state equation of an autonomousCNN made of N � N cells.

3. Receptor-based mo dels. This work is devoted to mathematical modelling of
pattern formation. Partial di�eren tial equations of di�usion type have long served as
models for regulatory feedbacks and pattern formation in aggregatesof living cells. We
proposenew reseptor-basedmodels for pattern formation and regulation in multicellular
biological systems.The idea is that patterns are controlled by speci�c cell-surfacerecep-
tors which transmit to the cells signals responsible for their di�eren tiation. The main
aim of this work is to check which aspects of self-organization and regenerationcan be
explained within the framework of CNNs.

The simplest model describing receptor-ligand is given in the form of three equations.
It takesinto considerationthe density of free receptors,of the bound receptorsand of the
ligands. We usea representation of this simplest receptor-basedmodel that is as generic
as possibleand basedon the schemeshown in Fig. 2.
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Fig. 2. General scheme of the simplest receptor-basedmodel

The abreviations in Figure 2 are as follows: l. � ligands, b.r. � bound receptors,e.c. �
epithelial cells, f.r. � free receptors.We assumethat new ligands and new free receptors
are produced on cell surface through a combination of recycling (dissociation of bound
receptors)and de novo production within the cell. Then a ligands binds to a free receptor
reversibly which results in a bound receptor that is internalised into the cell. Bound
receptorsalso dissociate. Both ligands and free receptorsundergo natural decay.

We considerone-dimensionalepithelial sheetof length L . We denotethe concentration
of ligands by w(x; t), where x and t are space-and time-coordinates, with x increasing
from 0 to L along the body column. The bound and free receptorsdensitiesare denoted
by u(x; t) and v(x; t), respectively. For simlicit y we assumethat all binding processesare
governed by the law of massaction without saturation e�ects. The model is described
by the following dynamical system:

@
@t

u = f 1(u; v; w)(16)

@
@t

v = f 2(u; v; w)

@
@t

w = d
@2

@x2 w + f 3(u; v; w);

where u; v; w : [0; 1] � R + ! R + , the functions f i ; i = 1; 2; 3, are nonnegative for
nonnegative arguments and they have the following form:

f 1 = � a1u + g1(u; v) � buw+ cv;

f 2 = � a2v + buw� cv;

f 3 = � a3w � buw+ g3(u; v) + cv;

ai > 0; i = 1; 2; 3, b;c > 0. We suppose that the functions gi ; i = 1; 3 are of quadratic
form, i.e. gi (u; v) = gi u2. The model has biological interpretation for such functions [7].
a1 is the rate of decay of free receptors, a2 is the rate of decay of bound receptors and
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a3 is the rate of decay of ligands, the function g1 de�nes the rate of production of new
free receptors, the function g3 de�nes the rate of production of ligands, cv is the rate of
dissociation of bound receptors,b is the rate os binding of ligands and free receptorsand
d is the di�usion coe�cien t for ligands.

After the seminalpaper of Turing [7], the study of patterns arising through bifurcation
hasbeenprevalent in the modelling literature, especially regarding morphogenesis.Again
werestrict our attention hereto bifurcation solutions. Di�usion-driv en instabilit y is alsoa
mechanism of pattern formation in the activator-inhibitor models.The results of de novo
pattern formation from the dissociated cells and of the cutting experiments suggestthat
there exists an organising centre which createsa global structure of the set of solutions.
Thus, a natural approach is to study at �rst the di�usion-driv en instabilities (Turing
type instabilit y). We show that a three-variable receptor-basedmodel (16) can produce
di�usion-driv enpatterns only under assumptionthat the number of freereceptorsincreases
nonlinearly by somekind of positive feedback (autocatalysis). Also production of ligands
must depend on free receptors. In the next sections we outline the results concerning
stabilit y of the solutions of such reaction-di�usion equations.Di�usion-driv en instabilit y
(Turing-t ype instabilit y) ariseswhen there exists a spatial homogeneoussolution which
is asymptotically stable in the senseof linearised stabilit y in the space of constant
functions, but is unstable with respect to inhomogeneousperturbation. We study the
linear instabilities of the homogeneoussteady state to classify the patterns which may
grow.

4. Dynamical behavior of the CNN mo del. Describing function approac h.
As we mentioned above, there are several ways to approximate the Laplacian operator
in discrete spaceby a CNN synaptic law with an appropriate A-template [2]. In our case
we take one-dimensionaldiscretized Laplacian template:

A : (1; � 2; 1):

Therefore, the CNN representaion for our reseptor-basedmodel (16) is the following:

duj

dt
= � a1uj + g1u2

j � buj wj + cvj(17)

dvj

dt
= � a2vj + buj wj � cvj

dwj

dt
= � a3wj + d(wj � 1 � 2wj + wj +1 ) � buj wj + g3u2

j + cvj ;

1 � j � N . The above equation is actualy ordinary di�eren tial equation which is
identi�ed as the state equation of an autonomousCNN made of N cells. For the output
of our CNN model we take the standard sigmoid function [2].

In this section we intro duce an approximativ e method for studying the dynamics
of CNN model (17), based on a special Fourier transform. The idea of using Fourier
expansionfor �nding the solutions of PDEs is well known in physics. It is usedto predict
what spatial frequencesor modes will dominate in nonlinear PDEs. In CNN literature
this approach has been developed for analyzing the dynamics of CNNs with symmetric
templates [4, 5].

In this paper we investigate the dynamic behavior of a CNN model (17) by use of
Harmonic Balance Method well known in control theory and in the study of electronic
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oscillators [5] as describing function method. The method is basedon the fact that all
cells in CNN are identical [2] and, therefore, by intro ducing a suitable double transform,
the network can be reducedto a scalar Lur's scheme[5].

We study the dynamics and the stabilit y properties of (17) by using the describing
function method [5]. Applying the double Fourier transform:

F (s; z) =
k= 1X

k= �1

z� k
Z 1

�1
f k (t) exp(� st)dt;

to the CNN equation (17) we obtain:

sU = � a1U + g1U2 � bUW + cV(18)

sV = � a2V + bUW � cV

sW = � a3W + d(z� 1W � 2W + zW ) + g3U2
b UW + cV:

Without lossof generality we can denote N (U;V; W ) = gi U2 � bUW + cV and then we
obtain from (18):

U =
1

s + a1
N(19)

V =
1

s + a2
N

W =
1

s + a3 � d(z� 1 � 2 � z)
N :

In the double Fourier transform we supposethat s = i! 0, and z = exp(i 
 0), where
! 0 is a temporal frequency, 
 0 is a spatial frequency.

Accordingto the describingfunction method, H (s; z) =
s + a1

s + a3 � d(z� 1 � 2 + z)
is the

transform function, which canbe expressedin terms of ! 0 and 
 0, i.e. H (s; z) = H 
 0 (! 0).

We are looking for possibleperiodic state solutions of system (18) of the form:

(20) X 
 0 (! 0) = X m 0 sin(! 0t + j 
 0);

where X = (U;V; W ). According to the describing function method we take the �rst
harmonics, i.e. j = 0 )

X 
 0 (! 0) = X m 0 sin ! 0t;

On the other hand, if we substitute s = i! 0 and z = exp(i 
 0) in the transfer function
H (s; z), then we obtain:

(21) H 
 0 (! 0) =
i! 0 + a1

i! 0 + a3 � d(2 cos
 0 � 2)
:

According to (21), the following constraints hold:

< (H 
 0 (! 0)) =
X m 0

Ym 0

;(22)

= (H 
 0 (! 0)) = 0:

Hence,we obtain the following constraints:
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! 0 =
1

a3 � a1 + d(2 cos
 0 � 2)
(23)

X m 0 =
4
�

"

X m 0 arcsin
�

1
X m 0

�
+

s

1 �
1

X 2
m 0

#

:

Supposethat our CNN model (17) is a �nite circular array of N cells. In this casewe
have �nite set of frequences:

(24) 
 0 =
2� k
N

; 0 � k � N � 1:

Thus, (22), (23) and (24) give us necessaryset of equations for �nding the unknowns
X m 0 , ! 0, 
 0. As we mentioned above, we are looking for a periodic wave solution of (18),

therefore, X m 0 determinesapproximate amplitude of the wave, and T0 =
2�
! 0

determines

the wave speed.

Prop osition 1. CNN model (17) of the receptor-based system(16) with circular array
of N cells has periodic state solutions x j (t) with a �nite set of spatial frequences 
 0 =
2� k
N

, 0 � k � N � 1.

The following bifuraction diagrams are obtained for our CNN model:
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Remark 1. For the Turing-t ype instabilit y [7], the functions describing production
of free receptors (f.r.) must depend on the density of f.r. and this dependencemust be
a power function of the order � + 1, where � > 0. Hence, Turing type patterns can
occur if g1(u) = g1u� +1 ; � > 0. This function can depend also on the density of bound
receptors (b.r.), but also it is critical here that it depends on the density of f.r. For
numerical simulations the simplest function ful�lling the above condition is used,namely
g1(u) = g1u2. To model the production rate of ligands (l.) g3 we also take a function of
the concentration of free receptors. In numerical simulations as a function similar to g1

is usedg3(u) = g3u2.
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ÊËÅÒÚ ×ÍÎ ÍÅÂÐÎÍÍÈ ÌÐÅÆÈ ÍÀ ÐÅÀÊÖÈß ÄÈÔ ÓÇÈß

Àíæ åëà Ñëàâîâà

Â òàçè ñòàòèÿ ñàïðåäñòâåíè êëåòú÷íî íåâðîííè ìî äåëè íà óðàâíåíèÿ íà ðåàêöèÿ-
äèôóçèÿ, âúçíèêâàùè â áèîëèãèÿò à, ôèçèê àòà, èíæ åíåðñòâîòî. Äèíàìèê àòà è
óñòîé÷èâîñòòà íà ðåöåïòîðåí ìî äåë ñà èçñëåäâàíè ñ ìåòî äà íà îïèñâàùàò à ôóí-
êöèÿ. Íàïðàâåíè ñà ñèìó ëàöèè íà êëåòú÷íî íåâðîííèÿ ìî äåë è ðåçóëòàòèòå ñà
ñðàâíåíè ñ êëàñè÷åñêèòå.
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