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In this paper receptor-based Cellular Neural Network model is considered. Dynamics
and stability of such model are studied by applying describing function technique.
Comparison of the obtained results with the classical onesis made as well.

1. Intro duction to Cellular Neural Networks (CNNs). Spatial and spatio-
temporal patterns occur widely in physics, chemistry and biology. In many cases,they
seemto be generatedspontaneously These phenomenahave motivated a great deal of
mathematical modelling and the analysis of the resultant systemshas led to a greater
understanding of the underlaying mechanisms. Partial di erential equations of di usion
type have long served as models for regulatory feedbadks and pattern formation in
aggregatesin living cells. In this work we propose receptor-basedmodels for pattern
formation and regulation in multicellar biological systems. The systemsdescribing our
models are composed of both di usion-t ype and ordinary di erential equations. Such
systems causesomedi culties, since both existenceand behavior of the solutions are
more di cult to establish. Many aspects of qualitativ e behavior have to be investigated
numerically. For this purpose,we apply the Cellular Neural Networks (CNN) approach
for studying such models.

CNN is simply an analoguedynamic processorarray, madeof cellswhich contain linear
capacitors, linear resistorsand linear and nonlinear cortrolled sources.Let us considera
two-dimensionalgrid with 3 3 neighborhood systemasit is shovn on Fig.1.

The squaresare the circuit units-cells, and the links betweenthe cells indicate that
there are interactions between linked cells. One of the key features of a CNN is that
the individual cells are nonlinear dynamical systems,but the coupling betweenthem is
linear. Roughly speaking, one could say that thesearrays are nonlinear but have a linear
spatial structure which makesthe use of techniques for their investigation common in
engineeringor physics attractiv e.

We will give the generalde nition of a CNN which follows the original one:
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Fig. 1.3 3 neighborhood CNN.

Denition 1. The CNN is a

a) 2-, 3-, or n-dimensional array of

b) mainly identical dynamical systems,called cells, which satisfy two properties:
€) most interactions are local within a nite radiusr, and

d) all state variables are continuous valual signals.

Denition 2.An M M cellular neural network is de ned mathematically by four
Speci ¢ ations:

1) CNN cell dynamics;

2) CNN synaptic law which representsthe interactions (spatial coupling) within the
neighlor cells;

3) Boundary conditions;

4) Initial conditions.

Suppose for simplicity that the processingelemeris of a CNN are arranged on a
2-dimensional (2-D) grid (Fig. 1). Then, the dynamics of a CNN, in general, can be
described by:

X
1) xj (1) = X (t)+ Aijk 1 (Y (1) y (1) +
C(k;)2N (i3 )

+ Bl 1 (Ui uij ) + 1y
C(k;2N, (i5f )
2 yii (O) = f(Xj);
1 i M;1 M;

Xij ;i ;Ui refer to the state, output and input voltage of a cell C(j; j); C(i; j) refersto
a grid point assaiated with a cell on the 2-D grid, C(k;1) 2 N((i; j) is a grid point (cell)
in the neighborhood within a radius r of the cell C(i; j), I; is an independert current
source.A and B are nonlinear cloning templates which specify the interactions between
ead cell and all its neighbor cells in terms of their input, state, and output variables.
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Moreover, as we mentioned above the cloning template has geometrical meaningswhich
can be exploited to provide us with geometric insights and simpler design methods.
Now, in terms of de nition 2 we can presert the dynamical systemsdescribing CNNs.
For a general CNN whose cells are made of time-invariant circuit elemers, ead cell
C(ij ) is characterized by its CNN cell dynamics
(3) xj = g uislE);
where xj 2 R™ and uj is usually a scalar. In most cases,the interactions (spatial
coupling) with the neighbor cell C(i + k;j + I) are speci ed by a CNN synaptic law:
4) 15 = Ak i Xivkg+1 + Akt Fra(Xij sXiv kg +1) + Bigk 1 Uivkgj+1():
The rst term Ajx 1Xi+k;j+1 of (4) is simply a linear feedbad of the states of the
neighborhood nodes. The secondterm provides an arbitrary nonlinear coupling, and the

third term accourts for the cortributions from the external inputs of ead neighbor cell
that is located in the N, neighborhood.

2. Reaction-diusion ~ CNNs. It is known that someautonomousCNNSs represen
an excellert approximation to nonlinear partial dierential equations (PDES). In this
paper we presert the receptor-basedmodel by a reaction-di usion CNNs. The intrinsic
spacedistributed topology makesthe CNN ableto producereal-time solutions of nonlinear
PDEs. Considerthe following well-known PDE, generally referredto us in the literature
as a reaction-di usion equation:

@ _ 2.

a f(u)+ Dr “u;

whereu 2 RN andf 2 RN, D is a matrix with the diusion coe cien ts, andr 2u is the
Laplacian operator in R?. There are seeral ways to approximate the Laplacian operator
in discrete spaceby a CNN synaptic law with an appropriate A-template.

As a rst example of CNN models we considerthe Fisher equation. Sixty yearsago
Fisher showed that the propagation of a mutant genecan be modeled by a nonlinear
reaction-di usion partial di erential equation (PDE):

(5) a =D @
@ @
where f (u) = qu(l u). This classicequation, also known as the diusional logistic

equation, has beenfound to be useful in many other applications and has been widely
studied. In chemical media the function u(t; x) is the concernration of the reactant, D

represernts its diusion coe cien t, and the positive constart g speci es the rate of the
chemical reaction. In media of other natures u; D;q can represent dierent quartities.

In general, medium described by (5) is often referedto as a bistable medium, because
it has two homogeneousstationary states:u = 0 and u = 1. Obserwe the casewhen
f(u)y=u(u 1)(u E) in whichf (u) hasthree zeros:at u = 0; E and 1. This generalized
model arisesin many areasof ecology including selection-migration models and other
bistable population models. It is alsofound in a degenerateform of Nagumo's equation.

After rescalingthe time t°= qt and spacecoordinate x° = (¢q=D)**?x, and dropping
the prime, in one-dimensionalspace(5) becomes:

(6) Ut = Ugx + U(l u):
As we mertioned, Fisher equation (6) can be precerted by a reaction-di usion auto-
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nomous CNN where the cells are a degeneratespecial caseof Chua's oscillator. We will
map u(x; t) into a CNN layer such that the state voltage of a CNN cell xy,(t) at a grid
point (k;I) is assaiated with u(kh;t), h = x. Therefore, an one-dimensionalLaplacian
template is of the following form:

A= (1, 21),
and the CNN model in this caseis:
du
(7) d_tk = (Uk 1 2uk+ Uger) + ug(l u);
k=1:::;n,n= M:M, wherewe have M M cells.

In a two-dimensionalisotropic medium Fisher's equation (5) in rescaledvariablesis:
(8) Ut = Uxx + Uyy + U(1l  u):
The solution u(x; y;t) of (8) is a cortinuousfunction of the time t and the spacevariables

X, y. We shall approximate the function u(x; y;t) by a set of functions u;(t) which are
de ned as

Uik (t) = u(j hx;khy;t);
whereh, and hy arethe spaceintervalsin the x andy coordinates. Then, two-dimensional
discretized Laplacian A template takesthe following form:

0 1
0O 10
A=@1 4 1A;
0O 10
The CNN model for two-dimensional Fisher's equation (8) is:
du;
9) d—th = (Uk 2(t) + Ujkea (1) Auj(t) + uj ak(t) + Ujea k(1))
+ U@ k() = (Ujk 2(t) + ujrea (1) 4uji(t)
+ U (Ui () + nji(t);
1 j M,1 k M.

Another most widely studied nonlinear reaction-di usion partial di erential equation
(PDE) is the Brusselator equation, whosedimensionlessequation is:

(10) % = a (b+ Lu+u?v+ Dyr 2u
@
a - bu u?v+ Dyr 2v;
wherer 2 = @+ @ is a two-dimensionalLaplacian operator in R?, a, bare coe cien ts

2 2
of the chemic% reagon which give the concerration of initial substancesand D1, D, are
di usion coe cien ts. The Brusselator equation (10) is well known in chemical kinetics as
an ideal systemfor studying the dissipative structures. In somesensehis systembehaves
as harmonic oscillator.

Our CNN model for the Brusselator equation (10) with A,-template can be written
in the following form:
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_ 2
(11) ujx = a (b+ Lujk + ujVik + DafUjsrk + Uj 1k + Uik + Uik 1 4Ujk]
_ 2 .

Vik = buk Ui Vik+ Do[Visak + Vi o1kt Vikar t Vik 10 V]
1) M,1 k M.

The other model we consideris a more general form of the Hodgkin-Huxley model
for the propagation of the voltage pulse through a nerve axon which is referredto asthe
FitzHugh-Nagumo equation: 7

t
(12) U Uy =u(u )1 u) b u(s;x)ds;

0
0<x;t<1,0< < 1=2,b 0. The proposedequation (12) is a nonlinear parabolic
integro-di erential equation, in which u; is the rst partial derivative of u(t; x) with
respect to t, uy is the secondderivative of u with respect to x and u is a membrain
potential in a nerve axon. The steady state u = O represens the resting state of the
nerve.

Now, if we map u(x;t) into a CNN layer such that the state voltage of a CNN
cell vy (t) at a grid point (k;l) is assaiated with u(kh;t), h = x and usethe one-
dimensional discretized Laplacian template A1, then it is easyto designthe CNN model
of the proposedFitzHugh-Nagumo equation (12):

(1) CNN cell dynamics:

13 U soyw e bZt- ds:
(13) ot Y (X uj) . uj (s)ds:
(2) CNN synaptic law:
1
(14) 17 = F(Uj 12U + Ujer):

Let us assumefor simplicity that the grid size of our CNN model is h = 1 and let
us denote the nonlinearity n(u;) = u; (u;  )(1 uj). Substituting (14) into (13), we
obtain:

du; 24
(15) d—t‘ (U 1 2uj+U+)=n(y) b uy(s)ds;l j N
0

Equation (15) is actually an integro-di erential equation which is identied as the

state equation of an autonomousCNN madeof N N cells.

3. Receptor-based models. This work is devoted to mathematical modelling of
pattern formation. Partial dierential equations of di usion type have long served as
models for regulatory feedbads and pattern formation in aggregatesof living cells. We
proposenew reseptor-basedmodelsfor pattern formation and regulation in multicellular
biological systems.The ideais that patterns are controlled by speci ¢ cell-surfacerecep-
tors which transmit to the cells signals responsible for their di erentiation. The main
aim of this work is to ched which aspects of self-organization and regeneration can be
explained within the framework of CNNs.

The simplest model describing receptor-ligand is givenin the form of three equations.
It takesinto considerationthe density of free receptors,of the bound receptorsand of the
ligands. We usea represenation of this simplest receptor-basedmodel that is as generic
as possibleand basedon the schemeshown in Fig. 2.
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Fig. 2. General scheme of the simplest receptor-based model

The abreviations in Figure 2 are asfollows:|. ligands, b.r. bound receptors,e.c.
epithelial cells,f.r. free receptors. We assumethat new ligands and new free receptors
are produced on cell surfacethrough a combination of recycling (dissociation of bound
receptors)and de novo production within the cell. Then aligands binds to a free receptor
reversibly which results in a bound receptor that is internalised into the cell. Bound
receptorsalso disscciate. Both ligands and free receptorsundergo natural decay.

We considerone-dimensionalepithelial sheetof length L. We denotethe concerration
of ligands by w(x; t), where x and t are space-and time-coordinates, with X increasing
from O to L alongthe body column. The bound and free receptorsdensitiesare denoted
by u(x;t) and v(x; t), respectively. For simlicity we assumethat all binding processesre
governed by the law of massaction without saturation e ects. The model is described
by the following dynamical system:

@
16 —u = f(uv;w
(16) % 1( )
—v = fy(u;v;w
a 2(@ )
@
—w = d—=—=w+ fz(u;v;w);
@ g )
where u;v;w : [0;1] R* ! R™, the functions fi;i = 1;2;3, are nonnegative for

nonnegative argumerts and they have the following form:

fi = aiu+ gi(u;v)  buw+ cv;
fo = av+ buw oy
fg = asw  buw+ gs(u;Vv) + cv;

a > 0;i = 1;2;3, b;c > 0. We supposethat the functions g;;i = 1;3 are of quadratic
form, i.e. gi(u; v) = giu?. The model has biological interpretation for suc functions [7].
a; is the rate of decay of free receptors, a; is the rate of decay of bound receptors and
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as is the rate of decay of ligands, the function g; de nes the rate of production of new
free receptors, the function g; de nes the rate of production of ligands, cv is the rate of
disscciation of bound receptors, b is the rate osbinding of ligands and free receptorsand
d is the di usion coe cien t for ligands.

After the seminalpaper of Turing [7], the study of patterns arising through bifurcation
hasbeenprevalert in the modelling literature, especially regarding morphogenesisAgain
we restrict our attention hereto bifurcation solutions. Di usion-driv eninstability is alsoa
mechanism of pattern formation in the activator-inhibitor models. The results of de novo
pattern formation from the disscciated cellsand of the cutting experiments suggestthat
there exists an organising certre which createsa global structure of the set of solutions.
Thus, a natural approach is to study at rst the di usion-driv en instabilities (Turing
type instabilit y). We show that a three-variable receptor-basedmodel (16) can produce
di usion-driv enpatterns only under assumptionthat the number of freereceptorsincreases
nonlinearly by somekind of positive feedbak (autocatalysis). Also production of ligands
must depend on free receptors. In the next sectionswe outline the results concerning
stability of the solutions of sudch reaction-di usion equations. Di usion-driv eninstabilit y
(Turing-type instabilit y) ariseswhen there exists a spatial homogeneoussolution which
is asymptotically stable in the senseof linearised stability in the space of constart
functions, but is unstable with respect to inhomogeneousperturbation. We study the
linear instabilities of the homogeneoussteady state to classify the patterns which may
grow.

4. Dynamical behavior of the CNN model. Describing function approac h.
As we mertioned above, there are seweral ways to approximate the Laplacian operator
in discrete spaceby a CNN synaptic law with an appropriate A-template [2]. In our case
we take one-dimensionaldiscretized Laplacian template:

A:(1; 21):
Therefore, the CNN represertaion for our reseptor-basedmodel (16) is the following:

du;
(17) d_tj = au; + glujz ij w; + ¢y
dv _
rra av; + byw; oy
dw 2 i
rr awj +d(wj 1 2w + W41 )  bywj + gauf + ¢y
1 ] N. The above equation is actualy ordinary dierential equation which is

identi ed asthe state equation of an autonomousCNN made of N cells. For the output
of our CNN model we take the standard sigmoid function [2].

In this section we introduce an approximative method for studying the dynamics
of CNN model (17), based on a special Fourier transform. The idea of using Fourier
expansionfor nding the solutions of PDEs is well known in physics. It is usedto predict
what spatial frequencesor modes will dominate in nonlinear PDEs. In CNN literature
this approach has beendeweloped for analyzing the dynamics of CNNs with symmetric
templates [4, 5].

In this paper we investigate the dynamic behavior of a CNN model (17) by use of
Harmonic Balance Method well known in cortrol theory and in the study of electronic
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oscillators [5] as describing function method. The method is basedon the fact that all
cellsin CNN are identical [2] and, therefore, by intro ducing a suitable double transform,
the network can be reducedto a scalar Lur's scheme[5].

We study the dynamics and the stability properties of (17) by using the describing
function method [5]. Applying the double Fourier transform:

k1 21
F(s;z) = z X fi(t) exp( st)dt;
k=1 1
to the CNN equation (17) we obtain:
(18) sU =  aU+ qU? bUW + cV
sV = aV + bUW ¢V
sSW =  agW+d(z 'W 2W + zW) + gsUZUW + cV:

Without loss of generality we can denote N (U; V; W) = ggU2 bUW + cV and then we
obtain from (18):

1
19 u =
(19) st a
vV = 1
S+ ap
1
W = N:
s+az diz1!1 2 2)
In the double Fourier transform we supposethat s = i! ¢, and z = exp(i o), where

I o is atemporal frequency ¢ is a spatial frequency

S+ a;

s+az diz1 2+2)
transform function, which canbe expressedn termsof! g and o,i.e.H(s;z) = H (! o).

Accordingto the describingfunction method, H (s; z) = isthe

We are looking for possibleperiodic state solutions of system (18) of the form:
(20) X o(to) = Xmosin( ot +j o);
where X = (U;V;W). According to the describing function method we take the rst
harmonics,i.e.j = 0)

X (1 0) = X, sin! ot;

On the other hand, if we substitute s = i! o and z = exp(i o) in the transfer function
H (s; z), then we obtain:

W
(21) H o(lo) = - o

i'! o+ az d(2cos ¢ 2):

According to (21), the following constraints hold:

22) <H00) =
=(H (o) = O

Hence,we obtain the following constraints:
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1
azg, ap+d(2cos o 2) <

(23) o =
_#

+ 1 1
XmO xl%o

Supposethat our CNN model (17) is a nite circular array of N cells.In this casewe
have nite set of frequences:

(24)

4 .
Xmo — Xm, arcsin

2 k
O:W;O k N 1

Thus, (22), (23) and (24) give us necessaryset of equations for nding the unknowns
Xmo» !0, 0. As we mertioned above, we are looking for a periodic wave solution of (18),
. : . 2 .
therefore, X, determinesapproximate amplitude of the wave, and T = e determines
-0
the wave speed.
Prop osition 1. CNN model (17) of the receptor-basel system(16) with circular array

of N cells has periodic state solutions x; (t) with a nite set of spatial frequen@s ¢ =

2 k
W’O k N 1

The following bifuraction diagrams are obtained for our CNN model:

- 146/3125 v+7/2 w

Remark 1. For the Turing-type instability [7], the functions describing production
of free receptors (f.r.) must depend on the density of f.r. and this dependencemust be
a power function of the order + 1, where > 0. Hence, Turing type patterns can
occur if g1(u) = gu **; > 0. This function can depend also on the density of bound
receptors (b.r.), but also it is critical here that it depends on the density of f.r. For
numerical simulations the simplest function ful lling the above condition is used,namely
g1(u) = guu®. To model the production rate of ligands (I.) gz we also take a function of
the concerration of free receptors.In numerical simulations as a function similar to g;
is used gz(u) = gsu?.
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