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QUASIDOUBLES OF HADAMARD 2-(15,7,3) DESIGNS
WITH AUTOMORPHISMS OF ORDER 3

Zlatka T. Mateva, Svetlana T. Topalova∗

The study of quasidoubles of Hadamard designs is of interest for setting better or
exact lower bounds on the number of designs that can be obtained from several
designs of smaller parameters and, in particular, on the number of Hadamard designs
of greater parameters. We construct all the nonisomorphic 2-(15,7,6) designs with
automorphisms of order 3, and determine the orders of their groups of automorphisms.
There are 92 115 nonisomorphic 2-(15,7,6) designs with automorphisms of order 3.
Among them 12 716 designs are reducible into two 2-(15,7,3) designs. Most computer
results were obtained by the two authors independently, and by different programmes.

1. Introduction. A 2-(v, k, λ) design is a collection of k-element subsets (blocks)
of a set of v elements (points), such that each pair of points is contained in exactly λ
blocks.

For the basic concepts and notations concerning combinatorial designs refer for instance
to [1, 2, 3, 9].

Let b denote the number of the blocks of the design, and r − the number of blocks
in which a given point is contained. An incidence matrix of the design is a matrix of v
rows and b columns which contains 1 in the i-th row and j-th column iff the i-th point
is contained in the j-th block, and 0 if not.

Two designs are isomorphic if there exists a one-to-one correspondence between the
point and block sets of the first design and the point and block sets of the second design,
and if this one-to-one correspondence does not change the incidence, i.e. if the incidence
matrix of the first design can be obtained from the incidence matrix of the second one
by permuting rows and columns.

An automorphism is an isomorphism of the design to itself, i.e. a permutation of the
points that transforms the blocks into blocks. The set of all automorphisms of a design
form a group called its full group of automorphisms. Each subgroup of this group is a
group of automorphisms of the design.

Each 2-(v,k,λ) design implies the existence of 2-(v,k,mλ) designs for any integer
m > 1. These 2-(v,k,mλ) designs are called quasimultiples of a 2-(v,k,λ) design. A
quasimultiple 2-(v,k,mλ) is reducible into m 2-(v,k,λ) designs if there is a partition of
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its blocks into m subcollections each of which forms a 2-(v,k,λ) design. For m = 2
quasimultiple designs are called quasidoubles, and the reducible quasidouble designs are
called doubles.

A Hadamard matrix of order n is an n×n (±1)-matrix satisfying HHt = nI (its rows
are pairwise orthogonal).

Two Hadamard matrices are equivalent if one can be transformed into the other by a
series of row or column permutations and negations. An automorphism of a Hadamard
matrix is an equivalence with itself.

Each Hadamard matrix can be normalized, i.e. replaced by an equivalent Hadamard
matrix whose first row and column entries are 1-s. Deleting the first row and column of
a normalized Hadamard matrix of order 4m, and replacing −1-s by 0-s, one obtains a
Hadamard 2-(4m− 1,2m− 1,m− 1) design.

The 2-(15,7,6) design is quasidouble of the Hadamard 2-(15,7,3) design. According
to computer estimations [8] there exist 5 nonisomorphic 2-(15,7,3) designs and at least
57 810 nonisomorphic 2-(15,7,6) designs. This lower bound is improved in the present
work. The result is of interest for the classification of the double 2-(15,7,6) designs, and for
setting higher lower bounds on the number of Hadamard designs of greater parameters
[5, 6]. The first step towards the classification of the doubles of 2-(15,7,3) implies the
construction and study of 2-(15,7,6) designs with nontrivial automorphims.

The five 2-(15,7,3) designs have automorphism groups of orders 20 160, 576, 96, 168,
168. They possess automorphisms of prime orders 7, 5, 3, and 2. A double design can
have automorphisms of order 2 and automorphisms which preserve the two constituent
designs (see for instance [4]). Thus, to study the reducible 2-(15,7,6) designs, we have to
start with the classification of all (or only all reducible) 2-(15,7,6) with automorphisms
of orders 7, 5, 3, and 2. Orders 7 and 5 are considered in [7]. Order 3 is subject of the
present work. We construct all 2-(15,7,6) designs with automorphisms of order 3.

2. Automorphisms of order 3 of 2-(15,7,6) designs.

Theorem 2.1. An automorphism of order 3 of a 2-(15,7,6) design has either no fixed
points and blocks, or 3 fixed points and 6 fixed blocks.

Proof. Let D be a 2-(15,7,6) design with an automorphism ϕ of order 3 fixing f
points and h blocks. The number of points (15) and of blocks (30) is divisible by 3 and,
thus, f and h are divisible by 3 too.

A. Let f = 0 or h = 0. The number of blocks, incident with any point of D is 14, i.e.
not divisible by 3 and, thus, if h = 0, then f = 0 too. The number of points in a block
of D is 7, i.e. not divisible by 3 and, thus, if f = 0, then h = 0 too.

B. Let f > 0 and h > 0. Without loss of generality we can assume that ϕ acts as
(1, 2, 3)(4, 5, 6) . . . (15− f + 1) . . . (15) on the points, and as (1, 2, 3)(4, 5, 6) . . . (30− h +
1) . . . (30) on the blocks. Denote by u the number of nonfixed point orbits, and by w the
number of nonfixed block orbits.

Then the nontrivial orbit part of the incidence matrix A of D is:




A1,1 A1,2 . . . A1,w

A2,1 A2,2 . . . A2,w

. . . . . . . . . . . .
Au,1 Au,2 . . . Au,w



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where Ai,j , i = 1, 2, . . . u, j = 1, 2, . . . , w, are circulant matrices of order 3.
Let mi,j , i = 1, 2, . . . u, j = 1, 2, . . . , w, be equal to the number of 1’s in a row of

Ai,j , and si to the number of fixed blocks incident with a points of the i-th nontrivial
point orbit.The following equations hold for the matrix M = (mi,j)u×w

w∑

j=1

mi,j = 14− si, i = 1, 2, . . . u,(1)

w∑

j=1

m2
i,j = 26− 3si, i = 1, 2, . . . u.(2)

1. Let h > 6, then w ≤ 7. Since 14−si ≤ 26−3si, it follows that si ≤ 6, i = 1, 2, . . . u.
A direct check shows that the above equation system has no solution for w ≤ 7 and
si = 1, 2, . . . , 6. Thus, h ≤ 6.

2. Let h = 3 or f > 3. Then some pairs of fixed points are contained in fixed blocks,
and the λ parameter of the design cannot be kept.

3. Automorphisms of order 3 with no fixed points. Let D be a 2-(15,7,6)
design with an automorphism ϕ of order 3, fixing no points or blocks. Without loss of
generality we can assume that ϕ acts on the points as (1, 2, 3)(4, 5, 6) . . . (13, 14, 15), and
on the blocks as (1, 2, 3)(4, 5, 6) . . . (28, 29, 30). The incidence matrix A of D is:




A1,1 A1,2 . . . A1,10

A2,1 A2,2 . . . A2,10

. . . . . . . . . . . .
A5,1 A5,2 . . . A5,10


 ,

where Ai,j , i = 1, 2, . . . 5, j = 1, 2, . . . , 10, are circulant matrices of order 3.
Let mi,j , i = 1, 2, . . . 5, j = 1, 2, . . . , 10, be equal to the number of 1’s in a row of

Ai,j .The following equations hold for the matrix M = (mi,j)5×10:

10∑

j=1

mi,j = 14, i = 1, 2, . . . 5(3)

10∑

j=1

m2
i,j = 26, i = 1, 2, . . . 5,(4)

10∑

j=1

mi1,jmi2,j = 18, i1, i2 = 1, 2, . . . 5, i1 < i2.(5)

There are 62 inequivalent matrix solutions for M . After replacement by circulants
of their elements, 5 532 nonisomorphic 2-(15,7,6) designs were obtained, and the orders
of their automorphism groups were computed. The number of reducible designs among
them is 58. The results are illustrated in Table 1.

4. Automorphisms of order 3 with 3 fixed points. Let D be a 2-(15,7,6)
design with an automorphism α of order 3 with 3 fixed points and 6 fixed blocks. We
assume that α acts on the points as (1,2,3)(4,5,6). . . (13)(14)(15) and on the blocks
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Table 1. Order of the automorphism group of designs with automorphisms of order 3 with no
fixed points and blocks

Aut.gr.order 3 6 9 12 15 18 24 30 36 48 72 96 120 288 576 2304 20160 All
Designs 5276 158 34 23 6 12 7 1 2 3 2 1 1 1 3 1 1 5532

as(1,2,3)(4,5,6). . . (25)(26). . . (30). The nontrivial orbit part of the incidence matrix A of
D is:




A1,1 A1,2 . . . A1,8

A2,1 A2,2 . . . A2,8

. . . . . . . . . . . .
A4,1 A4,2 . . . A4,8




where Ai,j , i = 1, 2, 3, 4, j = 1, 2, . . . , 8, are circulant matrices of order 3.

Let mi,j , i = 1, 2, . . . 4, j = 1, 2, . . . , 8, be equal to the number of 1’s in a row of
Ai,j , and si to the number of fixed blocks incident with a points of the i-th nontrivial
point orbit. The following equations hold for the matrix M = (mi,j)4×8:

8∑

j=1

mi,j = 14− si, i = 1, 2, . . . 4(6)

8∑

j=1

m2
i,j = 26− 3si, i = 1, 2, . . . 4,(7)

4∑

i=1

mi,j ≤ 7, j = 1, 2, . . . 8.(8)

The incidence matrix of D can be presented as

(
A H
F C

)

The matrix H implies the incidence between nontrivial point orbits and fixed blocks,
F – between fixed points and nontrivial block orbits, and C – between fixed points and
fixed blocks. We generated by computer all possible matrix solutions for H, and found
out that the above system has solutions for only 5 of them. Below we denote by p the
transpose of (1, 1, 1), and by o the transpose of (0, 0, 0):

H =




p p p p p p
p p o o o o
o o p p o o
o o o o p p


 ,




p p p p p o
p p o o o p
o o p p o p
o o o o p o


 ,
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


p p p p o o
p p o o p p
o o p p p p
o o o o o o


 ,




p p p p o o
p p o o p p
o o p o p o
o o o p o p


 ,




p p p o o o
p o o p p o
o p o p o p
o o p o p p


 .

There are 11 solutions for M with the above solutions for H. After replacement
by circulants of the elements of these 11 solutions and construction of F and C in all
possible ways, we obtain 86 639 nonisomorphic 2-(15,7,6) designs. Among them there
are 56 designs which possess an automorphism of order 3 without fixed points too and,
thus, are obtained from the constructions in the previous section too. There are 12 672
reducible designs, 14 of which also possess an automorphism of order 3 without fixed
points. The results are presented in Table 2.

Table 2. Order of the automorphism group and reducibility of designs with automorphisms of
order 3 with 3 fixed points

gr.order 3 6 9 12 18 21 24 36 42 48 72 96 168 192 288 336 384 576 2304 2688 20160 All
Designs 82066 3854 67 272 15 9 244 2 5 58 2 18 4 7 1 2 7 3 1 1 1 86639

5. Classification results. In total we construct 92 115 2-(15,7,6) designs and
improve this way the existing lower bound on their number. Among them 12 716 are
doubles of Hadamard 2-(15,7,3) designs , and the data about them is of interest as a step
towards the full classification of all doubles and its usage for improving the lower bounds
on the number of Hadamard designs of greater parameters.
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КВАЗИДВОЙНИ НА АДАМАРОВИТЕ 2-(15,7,3) ДИЗАЙНИ С
АВТОМОРФИЗМИ ОТ РЕД 3

Златка Матева, Светлана Топалова

Изследванията на квазидвойните на Адамарови дизайни представляват интерес
заради приложенията при определяне на по-добри долни граници за броя на
дизайни, които могат да бъдат конструирани от няколко дизайна с по-малки па-
раметри, каквито са Адамаровите дизайни. Конструираме всички неизоморфни
2-(15,7,6) дизайни с автоморфизми от ред 3 и определяме реда на техните групи
от автоморфизми. Установяваме, че броят на неизоморфните 2-(15,7,6) дизай-
ни с автоморфизми от ред 3 е 92115, което е повече от известната досега долна
граница. Сред тях има 12716 дизайна, които са разложими до два Адамарови
2-(15,7,3) дизайна. Повечето компютърни резултати са получени независимо и с
различни програми от двата автора.
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