MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012

Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

ABOUT HOMOGENEOUS SPACES AND CONDITIONS OF COMPLETENESS OF SPACES*

Alexander Arhangel'skii, Mitrofan Choban[#], Ekaterina Mihaylova[#]

In this paper we introduce new notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and, co-homogeneous space. If a lo-homogeneous space X is first-countable at some point, then X is first-countable. If a lo-homogeneous space X contains a dense extremally disconnected subspace, then X is extremally disconnected.

1. Introduction. By a space we understand a Tychonoff topological space. We use the terminology from [7].

In this article we introduce new notions of homogeneity of spaces: o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Let \mathcal{P} be one of the properties $\{fan-complete,\ q-complete,\ sieve-complete\}$ and U be an open non-empty subset of X with the property \mathcal{P} . We prove that if X is a regular lo-homogeneous space and U is an open non-empty subset of X with the property \mathcal{P} , then X is a space with the property \mathcal{P} . Other properties of homogeneous spaces are studied as well

2. Various types of completeness. In this section we list some several notions introduced in [2, 4].

For a sequence $\{H_n : n \in \omega\}$ of subsets of a space X, $Lim\{H_n : n \in \omega\}$ is the set of all accumulation points of $\{H_n : n \in \omega\}$. If $H_{n+1} \subseteq H_n$ for any $n \in \omega$, then $Lim\{H_n : n \in \omega\} = \cap \{cl_X H_n : n \in \omega\}$.

A sequence $\{U_n : n \in \omega\}$ of open subsets of a space X is called a *stable sequence* if it satisfies the following conditions:

- (S1) $\emptyset \neq U_{n+1} \subseteq U_n$ for any $n \in \omega$;
- (S2) Every sequence $\{V_n : n \in \omega\}$ of open non-empty sets in X such that $V_n \subseteq U_n$ for each $n \in \omega$, has an accumulation point in X, i.e. $Lim\{V_n : n \in \omega\} \neq \emptyset$.

A subset L of a space X is bounded if for every locally finite family γ of open subsets of X, the set $\{U \in \gamma : U \cap L \neq \emptyset\}$ is finite.

From conditions (S1) and (S2) it follows that $H = \bigcap \{cl_X U_n : n \in \omega\} = Lim\{U_n : n \in \omega\}$ is a bounded non-empty subset of X.

Let X be a space , $\gamma = \{\gamma_n = \{U_\alpha : \alpha \in A_n\} : n \in \omega\}$ be a sequence of families of open subsets of X, and let $\pi = \{\pi_n : A_{n+1} \to A_n : n \in \omega\}$ be a sequence of mappings.

^{*2000} Mathematics Subject Classification: 54A35, 63E35, 54D50.

Key words: homogeneous space, open mapping, fan-complete space.

[#]Partially supported by a contract of Sofia University of 2012.

A sequence $\alpha = \{\alpha_n : n \in \omega\}$ is called a *c-sequence* if $\alpha_n \in A_n$ and $\pi_n(\alpha_{n+1}) = \alpha_n$ for every n. Let $H(\alpha) = \cap \{U_{\alpha_n}; n \in \omega\}$. Consider the following conditions:

- (SC1) $\cup \{U_{\beta} : \beta \in A_n\}$ is a dense subset of X for each $n \in \omega$.
- (SC2) $\cup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\}$ is a dense subset of the set U_{α} for all $\alpha \in A_n$ and $n \in \omega$.
- (SC3) $X = \bigcup \{U_{\mu} : \mu \in A_1\}$ and $U_{\alpha} = \bigcup \{U_{\beta} : \beta \in \pi_n^{-1}(\alpha)\}$ for all $\alpha \in A_n$ and $n \in \omega$.
- (SC4) $\cup \{cl_X U_\beta : \beta \in \pi_n^{-1}(\alpha)\} \subseteq U_\alpha \text{ for all } \alpha \in A_n \text{ and } n \in \omega.$
- (C1) For any c-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the sequence $\{U_{\alpha_n}; n \in \omega\}$ is stable.
- (C2) For any c-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, each sequence $\{y_n \in U_{\alpha_n}; n \in \omega\}$ has an accumulation point in X.
- (C3) For any c-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the sequence $\{U_{\alpha_n}; n \in \omega\}$ is a base of open neighbourhoods of the set $H(\alpha)$ in X.
- (C4) For any c-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the set $H(\alpha)$ is a non-empty compact subset of X.
- (C5) For any c-sequence $\alpha = \{\alpha_n \in A_n : n \in \omega\}$, the set $H(\alpha)$ is a non-empty countably compact subset of X.

Sequences γ and π are called an A-sieve if they have the Properties (SC3), (SC4). They are called a dense A-sieve if they have the Properties (SC1), (SC2), (SC4).

A space X is called *densely sieve-complete* if there exists a dense A-sieve with the Properties (C2) and (C4). A space X is called *sieve-complete* if there exists an A-sieve with the Properties (C2) and (C4).

A space X is called *densely q-complete* if there exists a dense A-sieve with the Property (C2). A space X is called *q-complete* if there exists an A-sieve with the Properties (C2) and (C5).

A space X is called *densely fan-complete* if there exists a dense A-sieve on X with the Property (C1). A space X is called *fan-complete* if there exists an A-sieve on X with the Property (C1).

The sieve-complete and q-complete spaces were studied in [5, 6, 8, 10, 9]. The other classes of spaces were introduced in [2, 3, 4].

3. Some new generalization of homogenity. A space X is called:

- o-homogeneous if for any two points $a, b \in X$ there exists a continuous open mapping $h_{ab}: X \longrightarrow X$ such that $h_{ab}(a) = b$;
- lo-homogeneous if for any two points $a, b \in X$ there exist two open subsets U and V of X and a continuous open mapping $h_{ab}: U \longrightarrow V$ such that $a \in U$, $b \in V$ and $h_{ab}(a) = b$;
- co-homogeneous if for any two points $a, b \in X$ there exist two open subsets U and V of X and a continuous open mapping $h_{ab}: U \longrightarrow V$ such that $a \in U$, $b \in V$, h(a) = b and the set $cl_X h_{ab}^{-1}(x)$ is countably compact for each $x \in V$;
- do-homogeneous if for any two points $a, b \in X$ there exist two open subsets U and V of X, two subsets A and B and a continuous open mapping $h_{ab}: A \longrightarrow B$ such that $a \in A \subseteq U \subseteq cl_X A, b \in B = h_{ab}(A) \subseteq V \subseteq cl_X B$ and $h_{ab}(a) = b$.

We mention that the space X is called d-homogeneous [1] if for any two points $a, b \in X$ there exist two dense subspaces A and B of X and a homeomorphism $h_{ab}: A \longrightarrow B$ such that $a \in A, b \in B$ and $h_{ab}(a) = b$.

Theorem 3.1 (see [1], Theorem 2.1). Let X be a regular locally separable first-countable space without isolated points. Then, X is d-homogeneous. 130

Proof. Fix two points $a, b \in X$. There exists two open subsets U and V of X such that U and V are separable subspaces of the space X, $a \in U$ and $b \in V$. Fix a dense countable subset L of U and a dense countable subset M of V. We can assume that $a \in L$ and $b \in M$. The spaces L and M are homeomorphic to the space of rationals \mathbb{Q} . Hence, there exists a homeomorphism $g: L \longrightarrow M$ of L onto M such that g(a) = b.

We put $C = X \setminus cl_X(U \cup V)$, $A = B = L \cup M \cup C$, g(x) = x for $x \in C$, g(x) = h(x) for $x \in L$ and $g(x) = h^{-1}(x)$ for $x \in M$. The set A = B is dense in X and $h : A \longrightarrow A$ is a homeomorphism. The proof is complete. \square

Theorem 3.2 (see [1], Theorem 2.2). Let X be a regular do-homogeneous space. Then, $\chi(X) = \chi(x, X) = \chi(y, X)$ for any points $x, y \in X$.

Proof. Fix two points $a,b \in X$. Then, there exist two open subsets U and V of X, two subsets A and B and a continuous open mapping $h:A \longrightarrow B$ such that $a \in A \subseteq U \subseteq cl_X A$, $b \in B = h(A) \subseteq V \subseteq cl_X B$ and h(a) = b. Then, $\chi(a,X) = \chi(a,A) = \chi(b,B) = \chi(b,X)$. The proof is complete. \square

Theorem 3.3. Let X be a regular lo-homogeneous space, \mathcal{P} be one of the properties $\{fan-complete, q-complete, sieve-complete\}$ and U be an open non-empty subset of X with property \mathcal{P} . Then, X is a space with property \mathcal{P} .

Proof. An open continuous image of a space with property \mathcal{P} has property \mathcal{P} (see [2, 3, 4, 5, 6]). Hence, X has locally property \mathcal{P} . Obviously, a space X has property \mathcal{P} if and only if it has locally property \mathcal{P} . The proof is complete. \square

Example 3.4. Let Y_0 be the space of irrationals, C be the unit circle, $Y_1 = C \times Y_0$ and X be the discrete sum of the spaces Y_0 and Y_1 . The space X is not homogeneous, is co-homogeneous and for any two points $a, b \in X$ there exists an open continuous mapping h_{ab} with compact fibers of X onto X such that $h_{ab}(a) = b$.

Example 3.5. Let Y_0 be the space of irrationals, \mathbb{R} be the space of reals, $Y_1 = \mathbb{R} \times Y_0$ and X be the discrete sum of the spaces Y_0 and Y_1 . The space X is not co-homogeneous, it is o-homogeneous and for any two points $a, b \in X$ there exists an open continuous mapping h_{ab} of X onto X such that $h_{ab}(a) = b$.

Example 3.6. Let C be the unit circle, \mathbb{R} be the space of reals and X be the discrete sum of the spaces C and \mathbb{R} . The space X is not co-homogeneous, not o-homogeneous but it is lo-homogeneous.

4. Extremal disconnectedness and do-homogenity of spaces. A space X is extremally desconnected if the closure of every open subset of X is open [7].

A point $x \in X$ is a point of extremal disconnectedness of the space X if $x \notin cl_X U \cap cl_X V$ for any two disjoint open subsets U and V of X. Obviously, the space X is extremally disconnected if and only if any point of X is a point of extremal disconnectedness of the space X. Moreover, if $x \in Y \subseteq X$ and Y is a dense subspace of the space X, then x is a point of extremal disconnectedness of the space X if and only if x is a point of extremal disconnectedness of the space Y.

Theorem 4.1. Let X be a regular do-homogeneous space and $a \in X$ be a point of extremal disconnectedness of the space Y. Then, X is an extremally disconnected space.

Proof. Fix a point $b \in X$. Then, there exist two open subsets U and V of X, two subsets A and B and a continuous open mapping $h:A\longrightarrow B$ such that $a\in A\subseteq U\subseteq cl_XA$, $b\in B=h(A)\subseteq V\subseteq cl_XB$ and h(a)=b. Then, a is a point of extremal disconnectedness of the space A and B is a point of extremal disconnectedness of the space B and of the space A. Hence, any point of A is a point of extremal disconnectedness. The proof is complete. \Box

Corollary 4.2 (see [1], Theorem 2.3). Let X be a regular do-homogeneous space and Y be a dense extremally disconnected subspace of the space X. Then, X is an extremally disconnected space.

Corollary 4.3 (see [1], Theorem 3.4). Let X be a regular space, $X \times X$ be a do-homogeneous space and Y be a dense extremally disconnected subspace of the space $X \times X$. Then, X is a discrete space.

REFERENCES

- [1] A. V. Arhangel'skii. On d-homogeneous spaces and squares. C. R. Acad. Bulgare Sci., 64 (2011), No 3, 311–314.
- [2] A. V. Arhangel'skii, M. M. Choban. Semitopological groups and the theorems of Montgomery and Ellis, C. R. Acad. Bulgare Sci., 62 (2009), No 8, 917–922.
- [3] A. V. Arhangel'skii, M. M. Choban. Remainders of rectifiable spaces. *Topology and Appl.* **157** (2010), 789–799.
- [4] A. V. Arhangel'skii, M. M. Choban. Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis. Topology Proceedings, 2010.
- [5] J. CHABER, M. M.ČOBAN, K. NAGAMI. On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces. Fund. Math., 84 (1974), 107–119.
- [6] M. Choban. The open mappings and spaces. Suplimente ai Rendicanti del Circolo Matematico di Palermo. Serie II, 29 (1992), 51–104.
- [7] R. Engelking. General Topology. PWN, Warszawa, 1977.
- [8] K. MORITA. A survey of the theory of M-spaces. General Topology and Appl., 1 (1971), 49–55.
- [9] B. A. Pasynkov. Open mappings. Soviet Math. Dokl., 8 (1967), 853–856.
- [10] H. H. WICKE. Open continuous images of certain kinds of M-spaces and completeness of mappings and spaces. General Topology and Appl., 1 (1971), 85-100.

Alexander Arhangel'skii 33, Kutuzovskii prospekt Moscow 121165, Russia

 $\verb|e-mail: arhangel.alex@gmail.com| \\$

Ekaterina Mihaylova St. Kliment Ohridski University of Sofia 5, James Bourchier Blvd 1164 Sofia, Bulgaria e-mail: katiamih@fmi.uni-sofia.bg Mitrofan Choban
Department of Mathematics
Tiraspol State University
5, Iablochikin
MD 2069, Kishinev, Republic of Moldova
e-mail: mmchoban@gmail.com

ОТНОСНО ХОМОГЕННИ ПРОСТРАНСТВА И УСЛОВИЯ ЗА ПЪЛНОТА

Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова

Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано.