MATEMATUKA W MATEMATUHYECKO OBPA3OBAHUWE, 2020
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2020
Proceedings of the Forty-ninth Spring Conference

of the Union of Bulgarian Mathematicians
2020

ABOUT OpenMP AND SOME COMBINATORIAL
ALGORITHMS®

Maria Pashinska, Iliya Bouykliev

In the current work, we present Open Multi-Processing programming interface
(Open MP) and its capabilities for programming parallel algorithms using CPU. We
use an example to illustrate how parallelism is achieved. We examine the accom-
plished speed-up and present a way of using OpenMP for work with accelerators —
an offload model of work.

Introduction. The invention and the mass usage of multi-core processors make par-
allel computing a viable and preferable option for many algorithms. One way to achieve
parallelism using the traditional Central Processing Unit (CPU) is with OpenMP. In the
current work, we present basic information about OpenMP and ways to use it for achiev-
ing parallelisation using CPU. Then we present an example of the way we have used it
in our work for parallelising a computable “heavy” part of an algorithm for determining
automorphism group and canonical form of a binary matrix. Here we also present ex-
perimental results. The last part of the current work presents information about using
OpenMP and accelerators. According to the Avitohol supercomputer user’s guide using
OpenMP is the more practical way to work with the Intel Xeon Phi’s accelerators.

1. OpenMP basics. OpenMP is an API (Application Programming Interface) that
supports multi processing programming. It is available since 1997 and is firstly developed
by IBM and Intel. In the following years more tech companies such as AMD and Nvidia
are included in the project. OpenMP is based on the shared memory systems represented
by multi-core CPUs. It is included in most C/C++ compilers (GCC, Clang, CCE, XL,
etc) and Fortran (CCE, Flang, XL, etc) compilers and there is no additional software
to be installed. Two things needed to use OpenMP are including the library and some
compiler directives for achieving parallelisation. The following is the mandatory compiler
directive used for OpenMP programming:

#pragma omp

*2020 Mathematics Subject Classification: 65Y05, 05E18.

Key words: parallel programming, OpenMP, accelerators.

The research of the second author was supported, in part, by a Bulgarian NSF contract DN02/2-
13.12.2016. The research of the first author was supported, in part, by the Bulgarian Ministry of
Education and Science by Grant No. DO1-221/03.12.2018 for NCHDC, a part of the Bulgarian National
Roadmap on Rls.

167

The ‘-fopenmp’ flag needs to be included for compiling in the IDE software application.
It works on most operating systems and hardware. The main goal is OpenMP programs
to be easy to write and to work on every system.

OpenMP works with the fork-joint model. At the start of the program there is only
one working thread called master. This thread corresponds to one working CPU. When
a parallel region (denoted by #pragma omp parallel) is reached we generate threads and
every thread is given part of the work. Threads work on different CPU cores. Thus work
is shared between the cores. We can explicitly tell how many threads to be generated
according to what is needed in the algorithm. By default the number of threads is
equals to the number of cores. Only the master thread remains at the end of the parallel
region. Since we are using shared memory systems threads have access to all the variables
declared in the program. There also can be declared private variables visible only by the
owner thread. Private variables are destroyed at the end of the parallel regions. There
are different ways of using OpenMP for parallel algorithms on the CPU. Here are shown
three of the more popular ways:

e Functional parallelism — every thread executes different functions.

e Tasking — units of work are generated dynamically and may be generated and

executed by different threads at runtime.

e For cycles — each cycle has a number of iterations. Each thread is assigned a number
of iterations of the loop.

In the rest of the article we will only look at the for cycles because it is the most
practical and popular type of parallelism in OpenMP. The key part here is the way loop
iterations are divided by the threads. This is called scheduling. There are 3 types of
scheduling — static, dynamic and guided.

e In the static scheduling threads get work in a round robin model. This means that
when the iterations are assigned to the number of threads, every thread gets work
according to its number. This is best to be used when the amount of the work is
the same for each thread. You can explicitly tell how many iterations a thread to
get at a time if needed in the algorithm — this is called chunk size. The following
table shows the difference between this type of division and the default one.

Number of iterations = 1 000 000
Thread 1 Thread 2 Thread 3 Thread 4
static
(default) [0, 249 999] | [250 000, 499 999] | [500 000, 749 999] | [750 000, 999 999]
static, 0,48, ..,11509,.., 2,6, 10, ..., 3,7, 11, ...,
chunk = 1 | 999 996 999 997 999 998 999 999

e In the dynamic scheduling each thread gets work as it is generated. You can again
specify a chunk size. After that the next chunk of iterations is given to the thread
that finishes first.

e The guided type of scheduling is a combination of the static and the dynamic ones.
Here the work is given at runtime. However chunk size is equal to the number of
loops divided by the number of threads. The number of iterations left after the
initial divide is again divided by the number of threads. Thus chunk size decreases
to better handle load imbalance between iterations.

168

2. Calculation of pseudo-orbits. Here we present an algorithm used to partition
the set of columns of the matrix into subsets containing one or more orbits with respect
to automorphism group of the matrix. These subsets are called pseudo-orbits. We use
this to determine automorphism groups and canonical forms of symmetrical and pseudo-
symmetrical structures (Hadamard matrices and combinatorial designs). The concept
of pseudo orbits, invariants and how they are used for calculating canonical forms and
determining automorphism groups can be found in [4].

Let us consider the following problem:

We have a square binary matrix M,,,. Our task is to calculate an n-dimensional
vector A using the given algorithm — for every three different columns i, is i3 we calculate

b using the elements of the matrix in the following formula:
n

biryiz,iz) = Y (myi, + My, +mys,)*.
j=1

For vector A we accumulate a; = a; + b, where i = iy, 13, i3.

The traditional realization of this problem has n* iterations. It uses 3 loops for
generating i1, i2, 43 and one loop to pass through all rows in the matrix for every different
combination. The total number of iterations is (n * C%'). There are a few things that we
need to consider when trying to parallelise this algorithm. Firstly, OpenMP gives the
opportunity to collapse perfectly nested loops (of which we have 3) into one linear loop
using #pragma omp parallel for collapse(it), where the variable it is the number of the
nested loops. The following table shows in practice how this is done. Here k represents
the iterations of the linear loop and z is the total number of iterations of j.

i €[0,2] and j € [0, 3]
Thread 1 Thread 2 Thread 3 Thread 4
)) (0,0 (0,1); (0,2) | (0,3); (L0); (1L1) | (1,2); (1,3); (20) | (2.1); (2.2); (23)
k=ixx+7|0,1,2 3,4,5 6,7, 8 9, 10, 11

As seen from the table above the total number of iterations must be known before
the runtime.This is why using the collapse option is not applicable in our case. A more
important thing that needs to be considered is the memory access. When using CPU
and OpenMP the threads have access to everything in the memory. It turns out that
when two threads attempt to read from the same memory there are no issues. However,
when more than one thread attempts to write in the shared memory at the same time
the result cannot be predicted. This is called data racing. This issue can be resolved
with the #pragma omp critical — only one thread can execute the critical region at a
time. This means that a thread reaches critical section it has to wait its turn to write in
the shared memory. This is called a barrier and significantly slows down the execution.
The following is an example of implementing the algorithm with OpenMP and critical
section.

#pragma omp parallel for private (temp) schedule (dynamic)
for (int i=0; i<n-3; i++){
for (int j=i 4+ 1; j<n-2; j++){
for (int k=j+1; k<n—1; k++){
169

temp = 0;

for(int row = 0; row < n; row++){

int b = mat [row] [i] + mat [row] [j] + mat [row] [k];
temp = temp + b*b;

}

#pragma omp critical {

a [i] = a [i] + temp;

a [j] = a [j] + temp;

a [k] = a [k] + temp;

1

To avoid the critical section that slows down the execution we transform the vector to
a matrix where the number of columns equals the number of threads (int a [n] [24]). Every
thread has id which we can access with the function omp_get_thread_num(). This returns
an integer — the number of the thread. Thus every thread writes in its own column and
the conflict is avoided. After the parallel portion of the program is executed we need to
combine the results of all threads. For every row of the result we summarize the columns
into the first (0) column of the resulted matrix. This only takes n (thread count) and
does not result in a significant slowdown.

Another way to achieve parallelism is when you have to apply this algorithm for many
matrices. The idea for every thread to get one matrix. In this implementation the time
for calculation depends only on the dimensions of the matrices. This implementation is
best to apply when the input includes many matrices of the same size. The elapsed time
remains constant and is equal to the time needed for sequential realization where the
input is one matrix. It does not depend on the number of the matrices if enough threads
are available.

We have tested the program on a Linux machine with Intel Xeon processor where the
total number of threads is 24. With the second version (no critical clause) we achieve
speedup between 2 and 10 times with both gcc and clang compilers. This difference is due
to the amount of work for each thread — for small matrices (40 x 40) the total number of
operations is approximately 37%%40. The first 24 iterations of the first loop will be spread
across the threads of the CPU. The thread that cares for i = 0 will do approximately
372 % 40 operations and the thread that cares for i = 23 will do approximately 142 % 40.
It is obvious that the operations cannot be divided symmetrically amongst the threads
for this particular matrix. However, for 200 x 200 matrix the total number of iterations
is over 10° and after initial division of the iterations there will still be a large number
of operations to be divided amongst the threads. In [3] the achieved speedup for matrix
multiplication using OpenMP and CPU with 24 cores is only 8 times compared the
sequential realization.

As you can see in the following table there is no difference in the speedup for the
different compilers — both clang and gcc achieve the same speedup. However, the clang
compiler gives better results in general for both sequential and parallel versions. Both
here and in [3] the speedup stays constant for bigger matrices.

3. Using OpenMP with accelerators. Another important feature of OpenMP
is the ability to program heterogeneous systems. A computer system is heterogeneous
when it has different types of devices — one host which is the traditional CPU and one

170

Matrices dim. 40 60 80 100 120 140 160 200

gce s 0.220s | 0.170s | 0.768s | 2.434s | 6.244s | 14.313s | 31.972s | 95.401s
0.014s | 0.056s | 0.152s | 0.470s | 1.040s | 2.231s 3.858s | 10.644s
0.018s | 0.150s | 0.674s | 2.151s | 5.533s | 12.869s | 27.402s | 89.641s
0.009s | 0.053s | 0.165s | 0.440s | 0.964s | 1.708s 3.178s 8.891s

clang

"W » |

or more accelerators (computational unit with different structure). There are two differ-
ent types of accelerators — GPU (graphics processing unit) and MIC (many integrated
cores). The Avitohol system has Intel’s Xeon Phi accelerators that are easily used with
offload model of work. The intention here is to offload computationally heavy part of
the program to the accelerator. In OpenMP this is achieved with #pragma omp target
teams. We implemented the offload model of work with Nvidia Titan Pascal GPU. To
accomplish this you need to install additional compiler and libraries. For Nvidia GPUs
Cuda is also mandatory. The two compilers, the libraries and the Cuda platform need to
be linked in the environment that is used for writing the code and this action is different
for the different operating systems. Our results show that OpenMP has limitations when
using Nvidia GPUs. Since OpenMP is developed to work on many system the control
over the GPU’s memory access and thread count is limited or non-existent. There are
many researches that compare OpenMP offload model working with GPU with other
programming models for GPUs. Comparisons between different implementations of par-
allel algorithms on CPU and GPU using both OpenMP and CUDA can be found in
[1], [2], [3]- The conclusion based on our experience, these and other sources is that for
programming GPU it is best to use different platform (OpenCL, Cuda, etc).

4. Conclusion. OpenMP gives easy to implement way for parallel programming.
It works on many operating systems and different hardware. The achieved speedup is
highly dependant on the algorithm that is to be implemented, the hardware and the
division of the work amongst the threads. Different types of accelerators can be used
with OpenMP. However, the GPU gives significantly better results when it is programmed
with platforms, more specified for the architecture.

REFERENCES

[1] A. HAvasHI, J. SHIRAKO, E. TiorTo, R. HO, V. SARKAR. Performance evaluation of
OpenMP’s target construct on GPUs. International Journal of High Performance Computing
and Networking, 13, 1 (2019), 54-69.

[2] J. LARKIN. OpenMP on GPUs, First Experiences and Best Practices, GPU technology
conference, 2018.

[3] K. THouTi, S. R. SATHE. Comparison of OpenMP & OpenCL Parallel Processing Tech-
nologies. International Journal of Advanced Computer Science and Applications (IJACSA),
3, 4 (2012), 56-61.

[4] M. J:KYMATUEBA-CTOEBA. AjropuTMu 3a u3CI€IBaHE HA KOMOMHATODHU CTPYKTYDH,
JlokTopcka nucepranusi, Codust, 2015.

171

Maria Pashinska

e-mail: marigpashinska@math.bas.bg
Iliya Bouyukliev

e-mail: iliyab@math.bas.bg

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

P. O. Box 323

Veliko Tarnovo, Bulgaria

172

N3ITOJISBBAHE HA OpenMP B HAKON KOMBUMUHATOPHUI
AJIrOoPUTMUA

Mapus ITammunacka, Unus Bylokanes

B Tasu cratus e mpejicTaBeHO KaK MPUJIOXKHUST mporpamen nHTepdeiic OpenMP
MOXKe Jla Ce M3IOJI3Ba 3a paslapaJiesiBaHe Ha paboTara HA HIKOM AJOPUTMH, KATO
Ce M3MOJI3Ba [EHTPAIHUST Iporecop. Pasriieian e KOHKpeTeH npumMep, Ype3 KOoiTo ca
okasanu Hsikon ot ocobenocrure Ha OpenMP. OneneHo e mosry4eHOTO YCKOpEeHue 1
e mpejicTaBeH HAYMHBT Ha usnosissane Ha OpenMP 3a pabora ¢ yckopurenn.

