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ON THE EXTENSION OF A PARTIAL SOLUTION OF

d SPREADS TO A PARALLELISM*

Stela Zhelezova

A parallel algorithm for enumeration of parallelisms invariant under a predefined
automorphism group is proposed. It is a parallelization of the sequential exhausted
backtrack search algorithm used in [20]. The algorithm is implemented using MPI
and the C++ language. It is applied for the construction of some of the parallelisms
of PG(3, 4) possessing an automorphism group of order 2.

1. Introduction. For the basic concepts and notations concerning spreads and par-
allelisms of projective spaces, refer, for instance, to [8], [9] or [15].

A t-spread in PG(n, q) is a set of distinct t-dimensional subspaces which partition
the point set. A t-parallelism is a partition of the set of t-dimensional subspaces by
t-spreads. Usually 1-spreads (1-parallelisms) are called line spreads (line parallelisms) or
just spreads (parallelisms). There can be line spreads and parallelisms if n is odd.

Two parallelisms are isomorphic if there exists an automorphism of the projective
space which maps each spread of the first parallelism to a spread of the second one.

A subgroup of the automorphism group of the projective space which maps each
spread of the parallelism to a spread of the same parallelism is called automorphism

group of the parallelism. Assuming non-trivial automorphisms is a popular approach,
because the search space is reduced since the object must be a union of complete orbits
of the predefined group.

The classification problem for parallelisms is the problem of determining a set of
representatives for the isomorphism classes of parallelisms with definite parameters. To
construct parallelisms with respect to specific additional conditions usually a backtrack
search is used. Generally speaking this is a tree search problem. An internal node
corresponds to a partial solution (with d spreads if the level of the node is d) and a leaf
corresponds to an entire parallelism. An algorithm for the extension of a partial solution
of d spreads has to explore the entire tree starting from the level d, so as to enumerate
all parallelisms corresponding to the leaves.

Recently multi-processor systems have become popular. The parallelisms classifica-
tion problem is well suited for a parallel computation. The extension of a partial solution
to a complete solution for parallelism with given parameters can be done simultaneously
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on different processing devices. Development of parallel algorithms for solving combina-
torial problems is of theoretical and practical significance.

Our goal is to speedup a given algorithm for combinatorial parallelisms classification
by using a particular strategy of parallelization in order to achieve classification for a
wider range of parameters.

There are general constructions of parallelisms. In PG(n, 2) they are known due to
Zaicev, Zinoviev and Semakov [22] and independently by Baker [1], and in PG(2i−1, q) by
Beutelspacher [6]. For all i ≥ 2 the case i = 2 was proved independently by Denniston [7].
There are two infinite families of regular cyclic parallelisms in PG(3, q) for q ≡ 2(mod 3)
by Penttila and Williams [12].

All parallelisms of PG(3, 2) are known. All parallelisms of PG(3, 3) were recently
classified by Betten [2]. To obtain all parallelisms in other projective spaces is currently
impossible. There are many classification results which rely on an assumed group of
symmetries. In PG(3, 5) the cyclic parallelisms are classified in [13], the regular paral-
lelisms with automorphisms of order 3 – in [19] and the parallelisms with automorphisms
of order 13 – in [21].

By now PG(3, q) are the most studied projective spaces and among them PG(3, 4)
is the smallest space whose parallelisms are not classified. Parallelisms of PG(3, 4) have
been subject of different computer-aided constructions supposing some automorphisms.
All automorphisms of odd prime orders have been considered – of orders 7 [17] and 3 [20]
by Topalova and Zhelezova, and 5 [18] by Topalova and Zhelezova, and independently [3]
by Betten.

Some of the parallelisms with automorphisms of order 2 have been classified too,
namely those which are invariant under the Baer involution [4] and the cyclic groups of
order 4 [5]. The problem of the classification of the remaining parallelisms with auto-
morphisms of order 2 is still open. We seek for approaches that will improve the given
algorithms for classification of parallelisms of projective spaces possessing a particular
automorphism group. One such possibility is to make algorithms faster using paralleliza-
tion.

Parallel algorithms for backtrack search have been studied intensively, and in partic-
ular most of them balance the load of node explorations among the available processors
[14]. Algorithms in [11] and [23] parallelize sequential backtrack search performing depth-
first explorations of sub-trees locally at each processor. In [10] a deterministic algorithms
for backtrack search is given which runs on an n-node mesh. In this paper we use a sim-
ple strategy to speedup a backtrack search algorithm for extending to a parallelism of a
partial solution of d spreads using the work pool parallel model.

2. Sequential algorithm. Let’s consider PG(3, q) with (q4 − 1)/(q− 1) points and
(q2 + 1)(q2 + q + 1) lines. There are q2 + 1 lines in a spread and q2 + q + 1 spreads
in a parallelism. We use the method described in [20] to construct the nonisomorphic
parallelisms with definite parameters invariant under a particular automorphism group.

At first the action of the chosen automorphism group on the lines of the projective
space is examined. Next all the possible spread orbits are constructed in advance, and
then a backtrack search is applied on them. Isomorphism testing is applied at several
stages within the search. For this purpose the normalizer of the considered automorphism
group is used as explained in [16].

174



3. Parallelization strategy. The problem under consideration has to be divided
into sub-problems. If the sub-problems have a data dependence among them, a com-
munication between the processors is needed. It can happen that the communication
is more expensive than the computation itself (this depends on the particular hardware
too). Splitting algorithms across many processes may result in a communication cost
that causes the program to run slower than it runs in serial. So we try to divide the
problem into sub-problems in such a way that there is no data dependency among them,
and thus the processors do not need to communicate with each other.

For the parallel algorithm being proposed the work pool model (Fig. 1) is used.

Fig. 1. A model of extension of the partial solutions

There is some additional information needed for the proper work of the algorithm,
such as line and spread orbits under the action of the considered group. At first this
information is read by each process. The partial solutions are enumerated and saved
in advance. Next the different partial solutions are consequently assigned to different
processes for balancing the load. Let p be the number of processes and m – the number
of partial solutions to extend. Each process reads all partial solutions, but tries to extend
only m/p of them. Distributing the work as shown in Fig. 1, the process with rank 0 will
extend partial solutions with indices 0, p, 2p, . . . and so on. The load-balancing depends
on whether m/p is an integer, or not. If it is not, then different processes might extend
a different number of partial solutions. A bigger source of imbalance, however, is the
fact that different partial solutions may need a different time to be processed. After a
parallelism is constructed the process writes it in its own file. At the end p files are
obtained and have to be combined.

4. Some experimental results. To study the behavior of the implemented parallel
algorithm we consider the construction of parallelisms of PG(3, 4) invariant under an
automorphism group of order 2. In PG(3, 4) there are 85 points and 357 lines, 17
mutually disjoint lines are needed to obtain a spread, and 21 spreads make a parallelism.

We have all spreads of the projective space constructed in lexicographic order. As it
is shown in [5] the Sylow subgroup of order 2 of the full automorphism group of PG(3, 4)
has three conjugacy classes of elements of order 2. We consider an automorphism group
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Table 1. Dependence of the execution time on the number of processes

p time (sec.) ratio

1 12284 –
4 5057 2.43
8 2573 4.77
16 1952 6.29

of order 2 which fixes 5 points and 21 lines and partitions the remaining lines in 168
orbits of length 2 (G221). Since there are fixed lines, there must be fixed spreads too. So
with respect to the action of G221 on spreads we obtain two types of spread orbits. A
spread orbit of length 1 (fixed spread) is made of some fixed lines and several whole line
orbits. A spread orbit of length 2 consists of spread lines from 17 different line orbits
(under G221).

As initial data for our algorithm we construct by the sequential algorithm the first
32 partial solutions of d = 6 spreads in the chosen lexicographic order. They include five
fixed spreads and a spread orbit of length 2. We need the line and spread orbits under
G221 too. The extension of these partial solutions by the two algorithms (sequential and
parallel) lead to 80 parallelisms of PG(3, 4) invariant under G221 . The comparison of
the algorithm work time depending on the number of the involved processes is given
in the Table 1. The results are obtained on high-performance computing system Avi-
tohol (http://nchdc.acad.bg/en/resources/iict/avitohol/) which has Intel Xeon
E5-2650 v2 2.6 GHz processors. The obtained data show that the considered algorithm
for the extension of a partial solution of d spreads to a parallelism achieves a very good
scalability.
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РАЗШИРЯВАНЕ НА ЧАСТИЧНО РЕШЕНИЕ ОТ d СПРЕДА ДО

ПАРАЛЕЛИЗЪМ

Стела Железова

Предложен е паралелен алгоритъм за построяване на паралелизми, инвариан-
тни спрямо предварително зададена група от автоморфизми. Той представлява
паралелизация на последователния алгоритъм за търсене с връщане, използван
в New parallelisms of PG(3, 4) (от Топалова и Железова, в Electronic Notes in
Discrete Mathematics, 57, (2017) 193–198). Алгоритъмът е реализиран с помощ-
та на MPI и езика С++. В статията е тествана работата му при използване на
различен брой процеси и при конструиране на някои паралелизми на PG(3, 4),
притежаващи група от автоморфизми от ред 2.
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