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We review certain inequalities satisfied by real-root polynomials, which are a refine-
ment of the Jensen inequalities for functions from the Laguerre–Polya class. Then we
demonstrate how these inequalities yield bounds for the zeros of classical orthogonal
polynomials.

1. The Laguerre-Pólya class and inequalities of Jensen. A real entire function
ϕ belongs to the Laguerre-Pólya class LP if ϕ admits representation of the form

ϕ(x) = cxne−αx2+βx
ω
∏

k=1

(

1 +
x

xk

)

e−x/xk , 0 ≤ ω ≤ ∞,

where c, β, xk ∈ R, α ≥ 0, n is a non-negative integer and

ω
∑

k=1

x−2
k < ∞. The importance

of the Laguerre-Pólya class LP stems from the fact that functions in this class, and only
these, are uniform limits on compact subsets of C, of sequences of algebraic polynomials
having only real zeros (see, e.g., [9, Chapter 8]). In particular, LP encompasses the set
RP of all real–valued algebraic polynomials with only real zeros. Throughout, RPn will
stand for the subclass of RP of polynomials of degree not exceeding n.

The entire functions from the Laguerre-Pólya class play an important role in mathe-
matics. The reader is referred to [17] for various properties and characterizations of the
functions from LP .

Jensen [7] proved that if f ∈ LP, then

(1) Lm(f ;x) :=

2m
∑

j=0

(−1)m+j

(

2m

j

)

f (j)(x)f (2m−j)(x) ≥ 0 for all x ∈ R.

The quantities Lm(f ;x) appear in the MacLaurin series for
∣

∣f(z)
∣

∣

2
, where z = x + iy

and x, y ∈ R:

(2)
∣

∣f(z)
∣

∣

2
=

∞
∑

m=0

Lm(f ;x)
y2m

(2m)!
.

Formula (1) readily follows from the Leibnitz rule applied to f(x+ iy)f(x− iy).
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The particular cases of (1) obtained with m = 1 and m = 2 are respectively the
well-known inequality of Laguerre [8, p. 17]

(3)
[

f ′(x)
]2 − f(x)f ′′(x) ≥ 0, f ∈ LP, x ∈ R,

and the inequality

(4) 3
[

f ′′(x)
]2 − 4f ′(x)f ′′′(x) + f(x)f (4)(x) ≥ 0, f ∈ LP , x ∈ R.

In the early seventies of the last century inequalities (1) were rediscovered by Patrick [15,
16]. Csordas and Varga [3] proved that the validity of (1) for all m ∈ N0 implies that f

has only real roots, provided f(z) = e−αz2

f1(z), α ≥ 0, and f1 is a real entire function of
genus 0 or 1 (see also [2, Theorem 2.2]). Thus, in these cases the inequalities (1) provide
a characterization of the Laguerre-Pólya class. Moreover, Csordas and Varga used (1)
to formulate some necessary and sufficient conditions for the validity of the Riemann
hypothesis. The importance of (1) in the study of LP and its relation to the Turán type
inequalities was investigated by Craven and Csordas [1].

Of course, Jensen inequalities hold true in the more narrow class RP , in which case
the infinite sum in (2) terminates. Moreover, if f is a polynomial of degree n, then the
condition Lm(f ;x) ≥ 0 for m = 0, 1, . . . , n, is necessary and sufficient for f ∈ RPn. If
f(x) = (x− x1)(x − x2) . . . (x− xn) ∈ RPn, then

|f(x+ iy)|2 =

n
∏

k=1

(

(x− xk)
2 + y2

)

,

and comparison of the coefficients of y2m here and in (2) implies the positivity of Lm(f ;x)
through the following explicit formula:

(5) Lm(f ;x) = (2m)!f2(x)
∑ 1

(x− xi1 )
2 . . . (x− xim)2

,

where the sum is over all m-combinations {i1, . . . , im} of {1, 2, . . . , n}.

2. Refinements for real-root polynomials. As it may be expected, for real-root
polynomials Jensen’s inequalities can be sharpened. We begin with the following rather
straightforward refinement of (1):

Theorem 2.1. If m ∈ N and f ∈ RPn, where n ≥ m, then

(6) Lm(f ;x) ≥
(

2m
m

)

(

n
m

)

[

f (m)(x)
]2

for every x ∈ R.

Moreover, the equality in (6) holds for every x ∈ R if f is either a polynomial of degree

less than m or f(x) = c(x− a)n with a, c ∈ R.

Proof. The claim of Theorem 2.1 is clear, if deg f < m. If f(x) = (x−x1) . . . (x−xn),
where n ≥ m and {xi}ni=1 are real, then application of the quadratic mean – arithmetic
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mean inequality to (5) implies

Lm(f ;x) = (2m)! f2(x)
∑ 1

(x− xi1)
2 . . . (x− xim)2

= (2m)!
∑

(x− xi1 )
2 . . . (x− xin−m

)2

≥ (2m)!

(
∑

(x− xi1) . . . (x− xin−m
)
)2

(

n
m

)

= (2m)!

[

f (m)(x)
]2

m!2
(

n
m

) =

(

2m
m

)

(

n
m

)

[

f (m)(x)
]2
,

and the equality occurs if and only if x1 = x2 = . . . = xn. On the other hand, if f ∈ RPn

is of degree k, m ≤ k < n, then by the above argument we get

Lm(f ;x) ≥
(

2m
m

)

(

k
m

)

[

f (m)(x)
]2 ≥

(

2m
m

)

(

n
m

)

[

f (m)(x)
]2

and the last inequality is strict if f (m)(x) 6= 0. Theorem 1 is proved. �

In the particular case m = 1, Theorem 2.1 provides the following improvement of the
Laguerre inequality:

(7) (n− 1)
[

f ′(x)
]2 − nf(x)f ′′(x) ≥ 0, x ∈ R, f ∈ RPn.

Inequality (7) has been proposed as a problem in [10]. It should be pointed out however
that this inequality is much older. By a shift of the variable it is seen that (7) is equivalent
to the same inequality for x = 0 only, thus, (7) provides an inequality for the coefficients
of a real-root polynomial. Already Newton was aware (see, e.g., [6]) that, if f(x) =
n
∏

k=1

(x+xk) = xn + c1x
n−1 + · · ·+ cn, {xk}n1 - real, then the coefficients of f must satisfy

(8) c2k ≥ k + 1

k

n− k + 1

n− k
ck−1ck+1 for k = 1, . . . , n− 1.

In fact, inequalities (8) are a consequence from (7), they follow by application of (7) to
the derivatives of f (which are also real-root polynomials) with x = 0.

There is also an improvement of (4) for real-root polynomials, different from the one
provided by Theorem 2.1 with m = 2, it reads as follows: for every f ∈ RPn and x ∈ R,

(9) 3(n− 2)(n− 3)
[

f ′′(x)
]2 − 4(n− 1)(n− 3)f ′(x)f ′′′(x) + n(n− 1)f(x)f (4)(x) ≥ 0.

A proof of (9) was given by Foster and Krasikov in [5]. Again, they were not the first to
discover this inequality, as in 1963 Academician Nikola Obreshkov, in his last published
work [13], proved (9), among others. Foster and Krasikov should not be blamed for being
unaware of Obreshkov’s work, as it was written in Bulgarian (now an English translation
of [13] is included as Addendum in [14]). In their interesting paper [5], Foster and
Krasikov proposed a conjecture, which contains the inequalities (7) and (9) as particular
cases. In order to formulate this conjecture, let us set

(10) Un
2m(f ;x) :=

2m
∑

j=0

(−1)m+j

(

2m

j

)

(n− j)!(n− 2m+ j)!

(n−m)!(n− 2m)!
f (j)(x)f (2m−j)(x).
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Conjecture 2.2 (Foster and Krasikov [5]). Let f ∈ RPn; then for any integer m,

0 ≤ 2m ≤ n,

Un
2m(f ;x) ≥ 0 for every x ∈ R.

Conjecture 2.2 has been validated by Nikolov and Uluchev in [12], where thr following
theorem was proved.

Theorem 2.3 ([12]). (i) Let f ∈ RPn; then for any integer m, 0 ≤ 2m ≤ n,

(11) Un
2m(f ;x) ≥ 0 for every x ∈ R.

(ii) If f(x) = c(x− x1)(x− x2) . . . (x− xn), then

Un
2m(f ;x) = (2m)!f2(x)

∑

( 1

x− xi1

− 1

x− xi2

)2

. . .
( 1

x− xi2m−1

− 1

x− xi2m

)2

,

where the sum on the right-hand side is symmetric and is extended over all m-tuples

{{i1, i2}, . . . , {i2m−1, i2m}} of pairs of distinct indices among {1, . . . , n}.
(iii) For m ≥ 1, the inequality in (11) becomes an identity if and only if either f

is of degree less than m or f has a zero of multiplicity at least n − m + 1 ≥ 0, i.e.,

f(x) = (x− a)n−m+1f1(x), where f1 ∈ RPm−1.

For the reader’s convenience, we present a short proof of Conjecture 2.2, based on a
beautiful result of Academician N. Obreshkov. In his last published paper [13], Obreshkov
showed that if f1 and f2 are polynomials of degree p and q, respectively, and m is a
positive integer, not exceeding p and q, then the polynomial

(12) gm(z) =

m
∑

j=0

(−1)j
(

p− j

m− j

)(

q −m+ j

j

)

f
(j)
1 (z)f

(m−j)
2 (z)

is their covariant. Let us point out that, although at a first sight the degree of gm seems
to be p+ q−m, actually it does not exceed p+ q− 2m. Obreshkov proved the following
theorem:

Theorem 2.4 ([13, Theorem 6]). Let the zeros of the polynomial f1(z) of degree p
be located in a circular domain K1, and let the zeros of the polynomial f2(z) of degree q
be located in a circular domain K2, which has no common points with K1. Let m be a

positive integer, not exceeding p and q. Then the polynomial (12) has exactly p−m zeros

in K1, exactly q −m zeros in K2, and there are no zeros of (12) outside K1 and K2.

(As usual, by a circular domain it is meant the interior or the exterior of a circle in
the complex plane C, or one of the two open half-planes, determined by a straight line
in C).

To prove Conjecture 2.2, in Theorem 2.4 we replace m by 2m, put p = q = n ≥ 2m
and set f1(z) := f(z+ iε), f2(z) := f(z− iε), where f ∈ RP is of degree n and ε > 0. We
may think that K1 and K2 are the half-planes ℑ(z) < −ε/2 and ℑ(z) > ε/2, respectively.
In this situation the polynomial (12) becomes

g2m(z) =
(−1)m

(2m)!

2m
∑

j=0

(−1)m+j

(

2m

j

)

(n− j)! (n− 2m+ j)!

(n−m)! (n− 2m)!
f
(j)
1 (z)f

(2m−j)
2 (z).

According to Theorem 2.4, g2m has exactly n− 2m zeros in K1, exactly n− 2m zeros in
K2, and has no zeros in the strip −ε/2 ≤ ℑ(z) ≤ ε/2, in particular, g2m has no real zeros.
Since g2m(x) is real for x ∈ R, by virtue of the definition of f1 and f2, we conclude that
g2m(x) has a permanent sign on R. Moreover, this sign does not depend on the concrete

80



positions of x1, . . . , xn, the zeros of f , as g2m(x) is a continuous function of x1, . . . , xn.
Therefore, by choosing f of the form f(x) = (x−x1) . . . (x−xk)(x/M−1)n−k and letting
M → ∞, we see that the above conclusion remains true for any f ∈ RPn, i.e., for any

f ∈ RPn, sign g2m(x) is a constant, independent of the specific positions of the zeros of

f . By substituting f(x) = xm, we find the sign in question:

sign g2m(x) = (−1)m for every f ∈ RPn and x ∈ R.

Finally, passage to the limit ε → 0 implies that

signUn
2m(f ;x) = (−1)msign g2m(x) ≥ 0 for every f ∈ RPn and x ∈ R.

This completes the proof of Conjecture 2.2.

We are going now to show that if f ∈ RPn0
with n0 ≥ 2m, then for every n ≥ n0 the

inequality Un
2m(f ;x) ≥ 0 is indeed an improvement of the Jensen inequality Lm(f ;x) ≥ 0.

Theorem 2.5. Let m ∈ N and f ∈ RPn0
, where n0 ≥ 2m. Then, for every fixed

x ∈ R, the sequence
{

n−m Un
2m(f ;x)

}

∞

n=n0

is monotonically increasing

Proof. Let us point out that, under the assumptions of Theorem 2.5, Un
2m(f ;x) ≥ 0

and Un−1
2m−2(f

′;x) ≥ 0 for every n ≥ n0. From the easily verified identity

(n+ 1−m)Un+1
2m (f ;x) = (n+ 1)Un

2m(f ;x) + 2m(2m− 1)Un−1
2m−2(f

′;x)

(see [12, Lemma 4]), we conclude that

Un+1
2m (f ;x) ≥ n+ 1

n+ 1−m
Un
2m(f ;x),

and consequently

Un+1
2m (f ;x)

(n+ 1)m
≥ nm

(n+ 1−m)(n+ 1)m−1

Un
2m(f ;x)

nm
.

Hence, to prove Theorem 2.5, it suffices to show that

nm

(n+ 1−m)(n+ 1)m−1
≥ 1,

or, equivalently,
(

1− 1

n+ 1

)m−1

≥ 1− m− 1

n
.

This is obviously true when m = 1, and for m ≥ 2 it follows from the Bernoulli inequality
(1 + x)m−1 ≥ 1 + (m− 1)x, x > −1. Theorem 2.5 is proved. �

It is readily seen that

lim
n→∞

{

n−m Un
2m(f ;x)

}

= Lm(f ;x),

moreover, if f ∈ RPn0
, then, by Theorem 2.5, the sequence

{

n−m Un
2m(f ;x)

}

∞

n=n0

tends

towards Lm(f ;x) monotonically increasing. Hence, the inequality Un
2m(f ;x) ≥ 0 implies

the inequality Lm(f ;x) ≥ 0, which shows that for real-root polynomials inequalities (11)
are sharper than the corresponding Jensen inequalities.
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3. Applications. The inequalities for real-root polynomials (11) can be applied to
the derivation of estimates for the extreme zeros of the classical orthogonal polynomials
of Jacobi (and, in particular, of ultraspherical polynomials), Laguerre and Hermite ([18,
Chapter 4]). This is possible thanks to two facts: 1) they satisfy homogeneous ordinary
differential equations of second order and 2) their derivatives are orthogonal polynomials
from the same family. The inequality (11) with m = 2 implies the following necessary
condition for real-root polynomials (see also [18, eqn. (6.2.16)]):

Lemma 3.1. If f is a real-root polynomial of degree n ≥ 4 and f(x0) = 0, then

(13) 3(n− 2)
[

f ′′(x0)
]2 − 4(n− 1)f ′(x0)f

′′′(x0) ≥ 0.

Below we briefly demonstrate the application of Lemma 3.1 for obtaining bounds for
the zeros of the classical orthogonal polynomials.

3.1. Ultraspherical polynomials. Recall that the ultraspherical polynomials
{P (λ)

m }∞m=0, λ > −1/2, are orthogonal in [−1, 1] with respect to the weight function
wλ(x) = (1 − x2)λ−1/2. Particular cases of ultraspherical polynomials, corresponding to
λ = 0, 1 and 1/2, respectively, are the Chebyshev polynomials of the first and the second
kind, and the Legendre polynomials. The derivatives of ultraspherical polynomials are

also ultraspherical polynomials, more precisely,
d

dx

{

P (λ)
m (x)

}

= 2λP
(λ+1)
m−1 (x) for λ 6= 0.

They satisfy the second order ODE

(14) (1− x2)f ′′(x) − (2λ+ 1)x f ′(x) + n(n+ 2λ)f(x) = 0, f = P (λ)
n .

Let f = P (λ)
n and assume that f(x0) = 0. We make use of (14) and the differential

equation for f ′,

(1− x2)f ′′′(x) − (2λ+ 3)x f ′′(x) + (n− 1)(n+ 2λ+ 1) f ′(x) = 0,

to express f ′(x0) and f ′′′(x0) in terms of f ′′(x0) as follows:

f ′(x0) =
1− x2

0

(2λ+ 1)x0
f ′′(x0),

f ′′′(x0) =
[2λ+ 3)x0

1− x2
0

− (n− 1)(n+ 2λ+ 1)

(2λ+ 1)x0

]

f ′′(x0).

Putting these expressions in (13), canceling out the positive factor
[

f ′′(x0)
]2

and solving

the resulting inequality with respect to x2
0, we arrive at the conclusion that for the largest

zero xn,n(λ) of P (λ)
n there holds

x2
n,n(λ) ≤

(n− 1)(n+ 2λ+ 1)

(n+ λ)2 + 3λ+ 5
4 + 3 (λ+1/2)2

n−1

.

3.2. Jacobi polynomials The Jacobi polynomials {P (α,β)
m (x)}∞m=0 are orthogonal in

[−1, 1] with respect to the weight function wα,β(x) = (1−x)α(1+x)β , where α, β > −1.
They satisfy the second order ODE

(15) (1−x2)f ′′(x)+
(

β−α−(α+β+2)x
)

f ′(x)+n(n+α+β+1)f(x) = 0, f = P (α,β)
n .

The derivatives of Jacobi polynomials are also Jacobi polynomials, more precisely, there

holds
d

dx

{

P (α,β)
m (x)

}

=
1

2
(m+ α+ β + 1)P

(α+1,β+1)
m−1 (x).
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Let f = P (α,β)
n and f(x0) = 0, then from (15) we find

f ′(x0) =
1− x2

0

α− β + (α + β + 2)x0
f ′′(x0).

By substituting this expression in the ODE for f ′ with x = x0, we express f ′′′(x0)
through f ′′(x0) as follows:

f ′′′(x0) =

(

α− β + (α+ β + 4)x0

1− x2
0

− (n− 1)(n+ α+ β + 2)

α− β + (α + β + 2)x0

)

f ′′(x0).

Now we apply Lemma 3.1 with f = P (α,β)
n : by substituting the above expressions in

(13) and cancelling out the positive factor
[

f ′′(x0)
]2
, we obtain the inequality

3(n− 2)− 4(n− 1)
[

α− β + (α+ β + 4)x0

]

α− β + (α+ β + 2)x0
+

4(n− 1)2(n+ α+ β + 2)(1− x2
0)

(

α− β + (α+ β + 2)x0

)2 ≥ 0.

After multiplication by
(

α − β + (α + β + 2)x0

)2
and rearrangement (the usage of a

computer algebra software is strongly recommended), we arrive at the inequality

Az2 − 2B z + C ≤ 0, z = x0,

where

A = (2n+ α+ β)
[

n(2n+ α+ β) + 2(α+ β + 2)
]

> 0,

B = 2(β − α)
[

(α+ β + 6)n+ 2(α+ β)
]

,

C = −4n2(n+ α+ β) +
[

(α − β)2 − 8(α+ β) + 12
]

n+ 2(α− β)2 − 4(α+ β + 2).

After solving this inequality, we conclude that the zeros {xk,n(α, β)}nk=1 of the Jacobi

polynomial P (α,β)
n satisfy the inequalities

B − 4(n− 1)
√
∆

A
≤ xk,n(α, β) ≤

B − 4(n− 1)
√
∆

A
,

with A and B as given above and

∆ = n2(n+ α+ β + 1)2 + (α + 1)(β + 1)
[

n(n+ α+ β + 4) + 2(α+ β)
]

.

3.3. Laguerre polynomials The Laguerre polynomials {L(α)
m (x)}∞m=0 are orthog-

onal in (0,∞) with respect to the weight function wα(x) = xαe−x, where α > −1.
Specific properties of the Laguerre polynomials are the ODE

(16) x f ′′(x) + (α+ 1− x)f ′(x) + n f(x) = 0, f = L(α)
n ,

and
d

dx

{

L(α)
m (x)

}

= −L
(α+1)
m−1 (x).

Repeating the reasoning from the ultraspherical and the Jacobi case, we set f = L(α)
n

and assume f(x0) = 0, then we find

f ′(x0) =
x0

x0 − α− 1
f ′′(x0)

f ′′′(x0) =

(

x0 − α− 2

x0
− n− 1

x0 − α− 1

)

f ′′(x0).

By substituting these values in (13), after some simplification we arrive at the inequality

−(n+ 2)(x0 − α− 1)2 + 4(n− 1)n(x0 − α− 1) + 4(α+ 1)(n− 1)2 ≥ 0.
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By solving this inequality, we find that the zeros {xk,n(α)}nk=1 of the Laguerre polyno-

mial L(α)
n are located in the interval

[

α+1+
2(n−1)n

n+ 2

(

1−
√

1+
(α+ 1)(n+2)

n2

)

, α+1+
2(n−1)n

n+ 2

(

1+

√

1+
(α+ 1)(n+2)

n2

)]

.

3.4. Hermite polynomials The Hermite polynomials {Hm(x)}∞m=0 are orthogonal

in (−∞,∞) with respect to the weight function w(x) = e−x2

. Specific properties of the
Hermite polynomials are H ′

m(x) = 2mHm−1(x) and the ODE

f ′′(x) − 2x f ′(x) + 2n f(x) = 0, f = Hn.

By applying Lemma 3.1 we deduce that the zeros {hk,n}nk=1 of the n-th Hermite poly-
nomial Hn satisfy the inequality

h2
n,k ≤ 2(n− 2)2

n+ 2
.

Of course, one can use inequality (4) instead of Lemma 3.1 to obtain bounds for the
zeros of the classical orthogonal polynomials. However, the resulting bounds are less pre-
cise, due to the fact that Laguerre’s inequalities are consequences from the corresponding
real-root inequalities (11). For further results with this approach we refer to [4].

REFERENCES

[1] T. Craven, G. Csordas. Jensen polynomials and the Turán and Laguerre inequalities.
Pacific J. Math. 136, no. 2 (1989), 241–260.

[2] T. Craven, G. Csordas. Iterated Laguerre and Turán inequalities. J. Inequal. Pure Appl.

Math. 3, No. 3 (2002), article 39, http://jipam.vu.edu.au.
[3] G. Csordas, R. S. Varga. Necessary and sufficient conditions and the Riemann hypoth-

esis. Adv. Appl. Math. 11, no. 3 (1990), 328–352.
[4] D.K. Dimitrov, G.P. Nikolov. Sharp bounds for the extreme zeros of classical orthog-

onal polynomials. J. Approx. Theory 162, no. 10 (2010), 1793–1804.
[5] W.H. Foster, I. Krasikov. Inequalities for real-root polynomials and entire functions,

Adv. Appl. Math. 29, no. 1 (2002), 102–114.
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ВЪРХУ НЯКОИ НЕРАВЕНСТВА ЗА ПОЛИНОМИ С РЕАЛНИ

НУЛИ

Гено Николов

В статията се разглеждат някои неравенства за полиноми с реални нули, които
представляват уточнения на неравенствата на Йенсен за цели функции от класа
на Лагер–Пойа. Демонстрира се как такива неравенства могат да се прилагат за
получаване на оценки за крайните нули на класическите ортогонални полиноми.
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