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It is proven in [1] that the pseudo-interior of the Menger universal space µ1 is home-
omorphic to the Nöbeling space N

3

1 . Note that a complete description of topological
properties of µ1 and N

3

1 in [1] is given. This note contains a simple proof that the
pseudo interior of µ1 and N

3

1 are homeomorphic.

1. Introduction.

1.1. Let N+ = N∪{0} and I = [0, 1]. Also, the relation X ≈ Y means that
topological spaces X and Y are homeomorphic. Recall next some well-known facts.
Denote by C Cantor ternary set in the interval [0, 1]. Recall that C consists of those
points x ∈ [0, 1] which can be written in ternary system by using only digits 0 and

2. For example,
1

3
can be written as 0.1(3). At the same time

1

3
= 0.022 . . .(3), so

1

3
∈ C. Generally speaking, the Cantor set contains a subset ∂p (C), traditionally called

the pseudo-boundary of C. The pseudo boundary consists of all points of C which can

be presented in two ways in a ternary system. For example,
1

3
∈ ∂p (C). Reasonably the

set C\∂p (C) ≈ intp (C) is referred to as a pseudo interior of C.

Claim 1.1. Another way to describe the Cantor set is

C = [0, 1]\

∞⋃

n=1

3n−1−1⋃

k=0

(
3k + 1

3n
,
3k + 2

3n

)

Proof. The interval

(
3k + 1

3n
,
3k + 2

3n

)

is the middle open third of the interval
[
3k + 1

3n
,
3k + 2

3n

]

. Now, for every n ∈ N we divide the interval [0, 1] by 3n parts and re-

move the middle open third from each of them. Of course, some summands are contained
in others. Note however that this does not confuse the construction of the Cantor set. For

example supposing n = 2 we have
2
∪

k=0

(
3k + 1

3n
,
3k + 2

3n

)

=

(
1

9
,
2

9

)

∪

(
4

9
,
5

9

)

∪

(
7

9
,
8

9

)
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and obviously

(
4

9
,
5

9

)

⊂

(
3

9
,
6

9

)

=

(
1

3
,
2

3

)

– a summand which appears for k = 0.

However, the union
2⋃

n=1

2⋃

k=0

(
3k + 1

3n
,
3k + 2

3n

)

remains as it should be:

2⋃

n=1

2⋃

k=0

(
3k + 1

3n
,
3k + 2

3n

)

=

(
1

9
,
2

9

)

∪

(
1

3
,
2

3

)

∪

(
7

9
,
8

9

)

. �

It is not hard to see that

intp (C) = [0, 1]\

∞⋃

n=1

3n−1−1⋃

k=0

[
3k + 1

3n
,
3k + 2

3n

]

and this representation has the same “defects” as the one in the Claim 1.1.

1.2. Sierpinski carpet S [2] is a two-dimensional analog of the Cantor set. Shortly
speaking it can be obtained by dividing the unit square into 9 squares and the removing
the middle open square. Then continue the process of recursively removing open middle
squares. To describe precisely S we need some notations. Let us put for k, l ∈ N+ and
n ∈ N (as in Claim 1.1)

B =

∞⋃

n=1

3n−1−1⋃

k,l=0

(
3k + 1

3n
,
3k + 2

3n

)

×

(
3l+ 1

3n
,
3l + 2

3n

)

,

then S = I2\B. The first several iterations look like in the next picture (it is not fatal if
some square in the union is contained in a bigger one).

Further put

B =

∞⋃

n=1

3n−1−1⋃

k,l=0

[
3k + 1

3n
,
3k + 2

3n

]

×

[
3l + 1

3n
,
3l+ 2

3n

]

,

then the set S\B is called a pseudo interior intpS of S and reasonably S\intpS is referred
to as a pseudo boundary ∂pS of S.

1.3. Menger sponge µ1 is a subset of the three-dimensional cube I3 for which the
three projections on the coordinate planes are equal to the Sierpinski carpet: πxy

(
µ1
)
=

πyz

(
µ1
)
= πzx

(
µ1
)
≡ S. The picture below shows the first several steps for forming

Menger sponge.

Denote next by Sxy, Syz and Szx copies of S placed in the coordinate planes xOy, yOz
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and zOx. Then it follows from the above description that:

µ1 = π−1
xy (Sxy)

⋃

π−1
yz (Syz)

⋃

π−1
zx (Szx) .

Now we can define a pseudo boundary ∂pµ
1 of µ1 as

∂pµ
1 = π−1

xy (∂pSxy)
⋃

π−1
yz (∂pSyz)

⋃

π−1
zx (∂pSzx) .

As above the set µ1\∂pµ
1\intpµ

1 is by definition the pseudo interior of µ1. Note that as
above

intpµ
1 = π−1

xy (intpSxy)
⋃

π−1
yz (intpSyz)

⋃

π−1
zx (intpSzx) .

1.4. Now let us recall shortly what the Nöbeling space N3
1 is. According to [3] it is

the set of all points (x, y, z) ∈ [0, 1]
3
:= I3 such that no more than one of the coordinates

is rational. We use in this note that

N3
1 = I3\

(

Qxy

⋃

Qxz

⋃

Qyz

)

where Qxy =
{
(x, y, z) ∈ I3| x and y are rationals

}
. The sets Qxz and Qyz are deter-

mined in a similar way. We are now ready to consider the main result of this publication,
namely that intpµ

1 ≈ N3
1 .

2. The main result. Further we shall use the Cantor function (the so called “Devil’s
Staircase”). The Cantor function: κ:[0,1] → [0,1] can be defined as

κ(x) =







∞∑

n=1

an

2n
if x =

∞∑

n=1

2an
3n

∈ C; where an ∈ {0, 1}

sup
︸︷︷︸

y≤x;y∈C

κ(y) if x ∈ [0, 1] \C
.

Here is the graph Γκ of the function κ:

which explains the name of κ. It is a folklore fact that κ is (not strongly) increasing.
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Claim 2.1. The function κ is a constant in any interval

(
3k + 1

3n
,
3k + 2

3n

)

, where

0 ≤ k ≤ 3n−1 − 1.

Proof. Note that
3k + 1

3n
=

k

3n−1
+

1

3n
and

3k + 2

3n
=

k

3n−1
+

2

3n
. Since

1

3n
=

∞∑

k=n+1

2

3k
we have κ

(
3k + 1

3n

)

= κ

(
3k + 2

3n

)

. Therefore if
3k + 1

3n
< x <

3k + 2

3n
we

have

κ

(
3k + 1

3n

)

≤ κ (x) ≤ κ

(
3k + 2

3n

)

. �

Consider next the function f : I2 → I2 defined by the rule f (x, y) = (κ (x) , κ (y))
and denote by g the restriction of f on intpS. Put K = f (intpS).

Theorem 2.2. The function g : intp (S) → K is a homeomorphism.

Proof. It is easy to see that g is a continuous inclusion. Also g is onto by definition.

Hence g is convertible; put h = g−1. Note that if (ξ, η) ∈ K and ξ =

∞∑

n=1

αn

2n
; η =

∞∑

n=1

βn

2n

then h (ξ, η) =

(
∞∑

n=1

2αn

3n
,

∞∑

n=1

2βn

3n

)

. Now suppose that (x, y) and (u, v) are points of

K. Then x =

∞∑

n=1

an

2n
; y =

∞∑

n=1

bn

2n
and u =

∞∑

n=1

cn

2n
, v =

∞∑

n=1

dn

2n
where an, bn, cn, dn ∈

{0, 1}. Note that h (x, y)−h (u, v) = 2

√
√
√
√

(
∞∑

n=p

αn − cn

3n

)2

+

(
∞∑

n=p

bn − dn

3n

)2

. Now put

λ := λ (x, u) = min {n ∈ N| an 6= cn} and µ := µ (y, v) = min {n ∈ N| bn 6= dn}. Thus
for p ∈ N with λ (x, u) ≥ p and µ (y, v) ≥ p we have

h (x, y)− h (u, v) = 2

√
√
√
√

(
∞∑

n=p

αn − cn

3n

)2

+

(
∞∑

n=p

bn − dn

3n

)2

.

Next we have 2

∞∑

n=p

|an − cn|

3n
≤

2

3p
+

∞∑

n=p+1

2

3n
=

1

3p−1
, and similarly, 2

∞∑

n=p

|bn − dn|

3n
≤

1

3p−1
. Finally, one obtains h (x, y)−h (u, v) ≤ 2

√

2

3p−1
. Now we can finish the proof: let

ε > 0 be an arbitrary positive number. Next, choose p ∈ N in such a way that 2

√

2

3p−1
<

ε. Then if min {λ (x, u) , µ (y, v)} > p which is equivalent to h (x, y)− h (u, v) <

√

1

2p−2

we have h (x, y)−h (u, v) < ε. In other words, the function h is uniformly continuous. �

Corollary 2.3. The set f
(
I2\S

)
is a countable dense set L which consists of all

binary fractions of the type
l

2p
and I2\L = K is homeomorphic to intpS.

Proof. The function f is constant of the type
l

2p
on any closed square in I2\intpS
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and is a homeomorphism on intpS. According to Theorem 2.2 K is homeomorphic to
intp (S). �

Thus, it was proven above that the pseudo-interior of the Sierpinski carpet is homeo-
morphic to I2\K. Note that L is a dense countable subset of the square I2. We use here
(because of the limited size of the paper) a result from [4, pp. 140-141, Theorem 7.2]:

Lemma 2.4 ([4]). Let A and B are dense countable subsets of the unit square I2.

There exists a homeomorphism gA,B : I2 → I2 such that:

(a) gA,B (A) = B and

(b) gA,B = id|∂(I2), in other words, the restriction of g on the boundary ∂
(
I2
)
of the

square is an identity.

We shall use Lemma 2.4 for A = Lxy, Lyz, Lzx – the copies of L in the coordinate
planes. Also, we put B = I2 ∩ Q2 where Q is the set of rational numbers and B =
Bxy, Byz, Bzx – the copies of B in the coordinate planes. Using Lemma 2.4 we obtain
the homeomorphism H : I2 → I2 for which H (L) = B.

Lemma 2.5. The sets Buv × I and Quv are homeomorphic. Here uv ∈ {xy, yz, zx}.
Proof. We limited ourselves in the case uv = xy. The proof is almost evident:

Bxy × I =
{
((x, y) , z) | (x, y) ∈ I2 ∩Q2 and z ∈ I

}
=

{
(x, y, z) ∈ I3| x and y are rationals and z ∈ [0, 1]

}
= Qxy. �

Lemma 2.6. For uv ∈ {xy, yz, zx}the sets π−1
uv (Luv) and Buv×I are homeomorphic.

Proof. As in Lemma 2.5 we consider here the case uv = xy. Then we use Lemma
2.4 to obtain a homeomorphism Hxy : I2 → I2 for which Hxy (Lxy) = Bxy. Then
π−1
xy (Lxy) ≈ π−1

xy (Hxy (Lxy)) = π−1
xy (Bxy) ≈ Bxy × I ≈ Qxy. �

Theorem 2.7. The pseudo interior of the Menger sponge is homeomorphic to the

Nöbeling space N3
1 .

Proof. Following the definition, we have consequently:

N3
1 = I3\ (Qxy ∪Qxz ∪Qyz) ≈ I3\

(
π−1
xy (Lxy)∪π−1

xy (Lxy)∪π−1
xy (Lxy)

)
;

N3
1 ≈ I × I2\

(
I × (Lxy)∪

I × (Lxy)∪ I × (Lxy)
)
;

N3
1 ≈ I ×

((
I2\ (Lxy)

)
∪
(
I2\ (Lxy)

)
∪
(
I2\ (Lxy)

))
;

N3
1 ≈ I ×

((
I2\ (Lxy)

)
∪
(
I2\ (Lxy)

)
∪
(
I2\ (Lxy)

))
.

It follows from Corollary 2.3 that

N3
1 ≈ I × (intpSxy ∪ intpSyz ∪ intpSzx) ;

N3
1 ≈ I × intpSxy ∪ I × intpSyz ∪ I × intpSzx.

Therefore N3
1 ≈ π−1

xy (intpSxy)∪ π−1
yz (intpSyz)∪ π−1

zx (intpSzx) =
︸︷︷︸

def

intpµ
1. �
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ЗА ПСЕВДО-ВЪТРЕШНОСТТА НА КУБА НА МЕНГЕР

Владимир Тодоров

Публикацията съдържа сравнително лесно доказателство на това, че псевдо-
вътрешността на куба на Менгер (понякога наричан Менгеров сюнгер) е хомео-
морфна на пространството на Ньобелинг. Това е

”
лесна“ реплика на публикация

на Кавамура, Левин и Тимчатин, където са доказани доста повече неща от тео-
рията на размерностите. Доказателствата са достъпни и за мотивирани ученици
от 11.–12. клас, ако се обяснят на повече от шест страници.
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