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ON THE PSEUDO-INTERIOR OF MENGER SPONGE

Vladimir Todorov

It is proven in [1] that the pseudo-interior of the Menger universal space ,ul is home-
omorphic to the Nébeling space Ni. Note that a complete description of topological
properties of p' and N7 in [1] is given. This note contains a simple proof that the
pseudo interior of ,ul and N7 are homeomorphic.

1. Introduction.

1.1. Let Ny = NU{0} and I = [0,1]. Also, the relation X ~ Y means that
topological spaces X and Y are homeomorphic. Recall next some well-known facts.
Denote by C Cantor ternary set in the interval [0,1]. Recall that C consists of those
points x € [0,1] which can be written in ternary system by using only digits 0 and

2. For example, 3 can be written as 0.1(3). At the same time - = 0.022...3), so

1
3 € C. Generally speaking, the Cantor set contains a subset J, (C), traditionally called

the pseudo-boundary of C. The pseudo boundary consists of all points of C which can
be presented in two ways in a ternary system. For example, 3 € 0, (C). Reasonably the
set C\0p (C) = int, (C) is referred to as a pseudo interior of C.

Claim 1.1. Another way to describe the Cantor set is

co 3"7l-1
3k+1 3k+2
C:[O’l]\U U ( 3n 7 3n )

n=1 k=0

3k+1 3k+2
Proof. The interval ( 3: , 3:_ > is the middle open third of the interval
3k+1 3k+2
3:_ , 3: . Now, for every n € N we divide the interval [0, 1] by 3" parts and re-

move the middle open third from each of them. Of course, some summands are contained
in others. Note however that this does not confuse the construction of the Cantor set. For

example supposing n = 2 we have L2J 3k+1 3k+2 L 2 U 5 U 78
X i =2 wi Vi =(=.2 il L2
P SUPPOSIG ko \ 30 ' 3n 99 9°9 9°9
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4 12
and obviously ( ) C ( ) = (5’ §) — a summand which appears for k£ = 0.

2 2
3k+1 3k+2
However, the union U U ( + , 3: ) remains as it should be:

n=1 k=0

22 3+ 1 3k+2 12 12 78
U U n TL 9’9 U Q9 U 0’0 : D
o 3 9°9 3'3 9°9
It is not hard to see that
. 3k+1 3k+2
int, Ol\U U { gn ' gm ]
n=1

and this representation has the same “defects” as the one in the Claim 1.1.

1.2. Sierpinski carpet S [2] is a two-dimensional analog of the Cantor set. Shortly
speaking it can be obtained by dividing the unit square into 9 squares and the removing
the middle open square. Then continue the process of recursively removing open middle
squares. To describe precisely & we need some notations. Let us put for k,I € N, and
n €N (as in Claim 1.1)

3k:+1 3k+2 3l+1 3l+2
B = U U ( 3n )X( 3n ’ 3n )’

n=1 k,l=0

then S = I*\B. The first several iterations look like in the next picture (it is not fatal if
some square in the union is contained in a bigger one).

Further put

3 n—1__

> 3k+1 3k +2 3l+1 31+2
U U ’ 3n x 3n ’ 3n ’

then the set S\B is called a pseudo interior int,S of S and reasonably S\int,S is referred
to as a pseudo boundary 9,S of S.

1.3. Menger sponge u' is a subset of the three-dimensional cube I® for which the
three projections on the coordinate planes are equal to the Sierpinski carpet: 74, (ul) =
Tyz (,ul) = T,y (,ul) = S. The picture below shows the first several steps for forming
Menger sponge.

Denote next by Sz, Sy and S, copies of S placed in the coordinate planes zOy, yOz
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and zOz. Then it follows from the above description that:
pt = W;yl (Say) U 7Ty_z1 (Sy2) U 7Tz_m1 (Sa) -
Now we can define a pseudo boundary d,u' of u' as
aP:Ll‘l = W;yl (a:DSMJ) U W;zl (aPSyZ) U W;acl (aPSZZ) .

As above the set pl\apul\intppl is by definition the pseudo interior of x'. Note that as
above

intpp' =y, (intpSyy) U 7T;; (intpSy2) U o (intpS.z) -

1.4. Now let us recall shortly what the Nobeling space N7 is. According to [3] it is
the set of all points (z,y, z) € [0, 1]3 := I’ such that no more than one of the coordinates
is rational. We use in this note that

N = 1\ (Quy | J Qe Q)

where Qqy = {(z,y,2) € I*| z and y are rationals}. The sets Q. and Q,. are deter-
mined in a similar way. We are now ready to consider the main result of this publication,
namely that intpul ~ N}.

2. The main result. Further we shall use the Cantor function (the so called “Devil’s
Staircase”). The Cantor function: k:[0,1] — [0,1] can be defined as

= a > 2a
2—Z ifx:ZE;—nnGC; where a,, € {0,1}
Ii(l‘) — n=1 n=1
sup k(y) ifxe€0,1]\C
~—
y<z;yeC

Here is the graph T',; of the function k:

which explains the name of . It is a folklore fact that  is (not strongly) increasing.
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3k+1 3k+2)
, where

Claim 2.1. The function k is a constant in any interval ( T T

0<k<3rl_1.

q 2 .1
Sn_l + S_n al 3n = ﬁ +3_n Since 3_n =
)

2 3k+1 3k+2 3k+1 3k+2
Z -5 We have /@( 3:_ ) = /@( 3: ) Therefore if 3+ <z < 3: we
k=n+1

have
1 2
K(Bkgi— ) < k(x) < K(Bkgi— ) O

Consider next the function f : I? — I? defined by the rule f (z,%) = (k (z),% (v))
and denote by g the restriction of f on int,S. Put K = f (int,S).
Theorem 2.2. The function g : int, (S) — K is a homeomorphism.

Proof. Note that

3k +1 k 1 3k + 2 k
3 -

Proof. It is easy to see that g is a continuous inclusion. Also g is onto by deﬁnition.

- NP
Hence g is convertible; put h = ¢~ ~. Note that if ({,7) € K and { = Z o 1= Z 5

n=1

2 2
then h (§,n) <Z dn Z 6"). Now suppose that (z,y) and (u,v) are points of

3’
(7% bn > Cn > dn
K. Thenz:ZQ—n ,y:ZQ—n andu:ZQ—n, U:Z2—n where ay,, by, cp, d, €
n=1 n=1 n=1 n=1
,1}. Note that h (z,y)—h (u,v) = Gn —Cn + - . Now put
0,1}. N hat h h 2 3 3
n=p n=p

A= A(zr,u) = min{n € N| a, # ¢} and g = p(y,v) = min{n € N| b,, # d,,}. Thus
for p € N with A (z,u) > p and p (y,v) > p we have

2 2
- Qpn — Cp = bn*dn
o nn =2 (T ) o (St )
n=p n=p
|an*0n| 2 = 2 1 s — |bn*dn|
Next we have 22 —r— < 3—p+ Z 30 = 31 and similarly, 22 3 <
n=p n=p+1 n=p
2

— . Finally, one obtains h (z,y) —h (u,v) < 2 31

[ 2
€ > 0 be an arbitrary positive number. Next, choose p € N in such a way that 2 3 <

. Now we can finish the proof: let

1

1
e. Then if min {\ (z,u), ©(y,v)} > p which is equivalent to h (z,y) — h (u,v) < 4/ 22
we have h (z,y)—h (u,v) < e. In other words, the function h is uniformly continuous. O
Corollary 2.3. The set f (IQ\S) is a countable dense set L which consists of all

binary fractions of the type % and I*\L = K is homeomorphic to intpS.

l
Proof. The function f is constant of the type o on any closed square in [ 2\intp8
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and is a homeomorphism on int,S. According to Theorem 2.2 K is homeomorphic to
int, (S). O

Thus, it was proven above that the pseudo-interior of the Sierpinski carpet is homeo-
morphic to IQ\K. Note that L is a dense countable subset of the square I*. We use here
(because of the limited size of the paper) a result from [4, pp. 140-141, Theorem 7.2]:

Lemma 2.4 ([4]). Let A and B are dense countable subsets of the unit square I*.
There exists a homeomorphism ga,p : 1% — I? such that:

(a) ga,g (A) = B and

(b) ga,B = id|y(s2), in other words, the restriction of g on the boundary O (12) of the
square is an identity.

We shall use Lemma 2.4 for A = Ly, Ly, L., — the copies of L in the coordinate
planes. Also, we put B = I? N Q? where Q is the set of rational numbers and B =
By, Byz, B:; — the copies of B in the coordinate planes. Using Lemma 2.4 we obtain
the homeomorphism H : I? — I? for which H (L) = B.

Lemma 2.5. The sets By, X I and Qu, are homeomorphic. Here uv € {xy,yz, zx}.

Proof. We limited ourselves in the case uv = xy. The proof is almost evident:

Boy x I ={((z,9),2) | (z,y) eI’NQ*and z € I} =
{(z,y,2) € I’| x and y are rationals and z € [0,1]} = Qqy. O

Lemma 2.6. Foruv € {xy,yz, zx}the sets n,,} (L) and By, x I are homeomorphic.

Proof. As in Lemma 2.5 we consider here the case uv = xy. Then we use Lemma
2.4 to obtain a homeomorphism Hz, : I? — I? for which Hyy (Lyy) = Bgy. Then
Ty (Lay) 2 15y My (Lay)) = 75y (Bay) ® Boy X I = Quy. U

Theorem 2.7. The pseudo interior of the Menger sponge is homeomorphic to the
Nébeling space N3.

Proof. Following the definition, we have consequently'

NP = I\ (Quy UQuz UQys) ~ I\ (3! (L) Uty (L) Uy,
NP~ I x I\ (I % (Lyy) U' X (Lay) UT x (Lay))
N7 2 1 (12 (L) U (2 (L)) U (12 (Lsy)
N}~ I x ((I*\ (Lay)) U (I°\ (Lay)) U (I°\ (Lay))
It follows from Corollary 2.3 that
N~ T x (intpSey Uint,S,. UintpS..) ;

):
)-

Nf ~ I xintySpy UI X intpSy, UL X intpS,y.
Therefore N} ~ 7, ) (intpSay) Ut (intpSy.) Uns, (intpS.e) = intpu'. O
def
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3A IICEBJO-BBbTPEIITHOCTTA HA KYBA HA MEHTEP

Baagumup Tomopos

[Iy6snukamnusita cbabpKa CPABHUTEIHO JIECHO JTOKA3aTEJICTBO HA TOBA, Y€ IICEBIO-
BbTpeInHOCTTa Ha KyOa Ha Menrep (moHsikora HapudaH Meneepos cronzep) € XOMeo-
mopdHa Ha pocTpancTBoro Ha Heobesmur. ToBa e ,,jiecHa® perimka Ha 1y OJTUKAIUsT
na Kasamypa, Jlesun u TuMmuarus, KbIeTo ca JOKa3aHU JOCTA IOBEYE HEIA OT TEO-
pusita Ha pa3mepHocTuTe. JloKazarescrBara ca JOCTBITHU U 38 MOTUBUPAHU YIESHUIIN
or 11.-12. Kjac, ako ce OBSICHAT Ha ITOBeYe OT IIECT CTPAHUIIH.



