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The notion of a descent polynomial, a function in enumerative combinatorics that
counts permutations with specific properties, enjoys a revived recent research inter-
est due to its connection with other important notions in combinatorics, viz. peak

polynomials and symmetric functions. We define the function d
m(I, n) as a general-

ization of the descent polynomial and obtain an explicit formula for dm(I, n) when m

is sufficiently large.

1. Introduction. The descent polynomial is a function in enumerative combinatorics
that counts permutations with specific properties. It originates from 1915, when MacMa-
hon [3] introduced it in his book Combinatory Analysis. However, in the following years,
there was not much published about the descent polynomial. It was only in 2017 when
the topic was revisited by Diaz-Lopez, Harris, Insko, Omar, and Sagan [2]. In their paper,
Diaz-Lopez et al. gave two recurrence relations [2, Section 2] for the descent polynomial,
looked at its coefficients, and investigated its roots. In 2018, Bencs [1] answered some
questions about the coefficients of the descent polynomial, which were stated earlier by
Diaz-Lopez et al. Since then, there were several other publications looking at some gener-
alizations of the descent polynomial. In this paper, we look at an intuitive generalization
about the multiplicity of the elements.

First, let us define the original descent polynomial that was studied in [2]. Let
I = α1, α2, . . . , αt be a finite set of positive integers. We consider permutations of the set
{1, 2, . . . , n}. The descent polynomial is equal to the number of permutations for which
the set of all positions in the permutation where the corresponding elements are bigger
than the next ones, is exactly I. We study the following generalization, which has not
been studied yet: instead of the set {1, 2, . . . , n}, we are considering permutations of the
multiset
{1, . . . , 1
︸ ︷︷ ︸

m

, 2, . . . , 2
︸ ︷︷ ︸

m

, . . . , n, . . . , n
︸ ︷︷ ︸

m

}, where each number is of multiplicity m. In this case

we use the notation d
m(I, n). Note that the descent polynomial is equal to d

1(I, n).
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2. Preliminaries. For the rest of the paper, we assume that n and m are posi-
tive integers and I is a finite set of positive integers. If I is non-empty, we let I =
{α1, α2, . . . , αt}, where α1 < α2 < · · · < αt. By I− we denote the set I without its
biggest element αt, so I− = {α1, α2, . . . , αt−1}. Let Comp(t) be the set of all compo-
sitions of t. Recall that a composition of a positive integer t is an ordered sequence of
positive integers with sum t.

Definition 2.1. Let v = (v1, v2, v3, . . . , vℓ) be a finite sequence of positive integers.
We define

Des(v) = {i ∈ {1, 2, 3, . . . , ℓ− 1} : vi > vi+1}

to be the descent set of the sequence v.
Example 2.2. If v = (1, 3, 2, 6, 1, 1, 9, 3), then Des(v) = {2, 4, 7}.

Next, we formally define the generalization of the descent polynomial, which we are
considering in this paper.

Definition 2.3. Let Sn be the set of all permutations of the set

{1, 2, 3, . . . , n}.

Then we define the descent polynomial d(I, n) such that

d(I, n) = #{w ∈ Sn : Des(w) = I}.

Example 2.4. If n = 5 and I = {2, 4}, then d({1, 3}, 4) = 5, because there are 5
such permutations:

(4, 1, 3, 2) (4, 2, 3, 1) (3, 1, 4, 2) (3, 2, 4, 1) (2, 1, 4, 3).

Definition 2.5. Let S
(m)
n be the set of all permutations of the multiset

{1, 1, . . . , 1
︸ ︷︷ ︸

m

, 2, 2, . . . , 2
︸ ︷︷ ︸

m

, . . . , n, n, . . . , n
︸ ︷︷ ︸

m

}.

We define the function d
m(I, n) such that

d
m(I, n) = #{w ∈ S(m)

n : Des(w) = I}.

Example 2.6. If n = 3, m = 2, and I = {2}, then d
2({2}, 3) = 5, because there are

5 such permutations:

(1, 2, 1, 2, 3, 3) (1, 3, 1, 2, 2, 3) (2, 2, 1, 1, 3, 3) (2, 3, 1, 1, 2, 3) (3, 3, 1, 1, 2, 2).

3. General properties of dm(I, n). In this section, we show that dm(I, n) is weakly
increasing with m. We also prove that from some m onward, the function d

m(I, n)
stabilizes.

Proposition 3.1. For a positive integer n > αt, we have the following inequality

d
1(I, n) ≤ d

2(I, n) ≤ d
3(I, n) ≤ d

4(I, n) ≤ · · · .

Proof. By determining the first αt elements of the permutation, we determine the
entire permutation, because the rest of the elements are in weakly increasing order. We

juxtapose each permutation w ∈ S
(m)
n with a permutation w′ ∈ S

(m+1)
n , by using the first

αt elements of w in w′. Thus, we preserve the descent set I everywhere except possibly
at position αt. We want to compare w′

αt
and w′

αt+1 (αt-th and (αt + 1)-th elements in
w′). In the first αt elements of w′, the number 1 appears at most m times, so there is at
least one 1 in the rest of the elements. The rest of the elements are in weakly increasing
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order, so w′

αt+1 = 1. This leads us to:

w′

αt
= wαt

> wαt+1 ≥ 1 = w′

αt+1.

Because we can juxtapose each permutation in S
(m)
n with a different permutation in

S
(m+1)
n , it follows that dm(I, n) ≤ d

m+1(I, n). �

Proposition 3.2. The function d
m(I, n) stabilizes for m ≥ αt − t+ 1:

d
αt−t+1(I, n) = d

αt−t+2(I, n) = d
αt−t+3(I, n) = · · · .

Proof. To determine the entire permutation, it is enough to determine the first αt

elements of the permutation, because the rest of the elements are in weakly increasing
order. Let m ≥ αt − t + 1. The number 1 appears at most αt − t times in the first αt

elements, because wαi
6= 1 for i : 1 ≤ i ≤ t. So, the number 1 appears at least once in

the rest of the elements, which means that wαt+1 = 1. Also, we can use each number
from 1 to n as many times as we want in the first αt elements, because the number 1
appears at most αt − t times, and each number from 2 to n appears at most αt − t + 1
times there. Therefore, when m ≥ αt− t+1, the value of dm(I, n) is equal to the number
of sequences v = (v1, v2, . . . , vαt

), which satisfy the conditions:

• Des(v) = I−,

• vi ∈ {1, 2, . . . , n},

• vαt
6= 1.

So, for m ≥ αt− t+1, the value of dm(I, n) does not depend on m, which means that
for m ≥ αt − t+ 1, the function d

m(I, n) stabilizes. �

4. Formula for d∞(I, n). In the previous section, we proved that dm(I, n) stabilizes
for m ≥ αt − t + 1, so it is reasonable to introduce a new notation for the stabilized
function.

Definition 4.1. Let d∞(I, n) equals the function d
m(I, n) for m ≥ αt − t+ 1.

In this section, we derive an explicit formula for d∞(I, n). However, we first need to
introduce some crucial notations.

Definition 4.2. For the set I = {α1, α2, . . . , αt}, we let β = (β1, β2, . . . , βt) denote
the sequence of the first differences of the sequence (0, α1, α2, . . . , αt). So, β1 = α1 − 0,
β2 = α2 − α1, . . . , βt = αt − αt−1.

When we talk about compositions we imagine putting separators between balls in
a line. For example, the division of the balls below corresponds to the composition
(3, 1, 2, 2).

. . . | . | . . | . .

As we can see the numbers of balls between the separators give us the elements of
the composition. Let us put a weight on each ball and instead of taking the number of
balls, we take the total weight of the balls between the separators. Let us look at the
previous example, but this time let us put weights on the balls. We take the weights to
be β1, β2, β3, β4, β5, β6, β7, β8. Now the composition (3, 1, 2, 2) corresponds to

β1 β2 β3 | β4 | β5 β6 | β7 β8.
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We can write this in short as (σ1, σ2, σ3, σ4), where σ1 = β1 + β2 + β3,
σ2 = β4, σ3 = β5 + β6, and σ4 = β7 + β8. In the next definition, we define this
more generally.

Definition 4.3. Let A ∈ Comp(t) be a composition of t and A = (a1, a2, . . . , as).
For the sequence β = (β1, β2, . . . , βt), we define the function fβ, such that fβ(A) =
(σ1, σ2, . . . , σs), where

σ1 = β1 + β2 + · · ·+ βa1

σi = βa1+a2+···+ai−1+1 + βa1+a2+···+ai−1+2 + · · ·+ βa1+a2+···+ai
for all i : 2 ≤ i ≤ s.

To derive an explicit formula for d∞(I, n) we first need to prove the following lemma.
Lemma 4.4. Let j and n be positive integers such that j ≤ n. For the non-empty

set I = {α1, α2, . . . , αt}, we define β = (β1, β2, . . . , βt) as in Definition 4.2. Then, the
number of sequences v = (v1, v2, . . . , vαt

), which satisfy the conditions:

• vi ∈ {1, 2, . . . , n}

• vαt
= j

• Des(v) = I−

is

(1)
∑

A∈Comp(t)

(−1)t−s

(
n− 1 + σ1

σ1

)

· · ·

(
n− 1 + σs−1

σs−1

)(
j − 1 + σs − 1

σs − 1

)

,

where the summation is over all compositions A ∈ Comp(t). Recall that from
Definition 4.3 the variables σ1, σ2, . . . , σs depend on A by the relation
fβ(A) = (σ1, σ2, . . . , σs).

Proof. To prove this statement we make an induction on t — the number of
elements in I.

When t = 1, we have that I = α1 and I− = ∅. Therefore, the sequence v should look
like

1 ≤ v1 ≤ v2 ≤ v3 ≤ · · · ≤ vα1
= j.

There are
(
j−1+α1−1

α1−1

)
such sequences. Let us see what result we get by applying

formula (1). When t = 1, we get that β = (α1) and the set Comp(1) = {(1)}. Therefore,
fβ((1)) = α1 and σ1 = α1. Substituting these values in formula (1), we get

∑

A∈Comp(t)

(−1)t−s

(
n− 1 + σ1

σ1

)

. . .

(
n− 1 + σs−1

σs−1

)(
j − 1 + σs − 1

σs − 1

)

=

= (−1)1−1

(
j − 1 + σ1 − 1

σ1 − 1

)

=

(
j − 1 + α1 − 1

α1 − 1

)

,

so formula (1) is true for t = 1. Let us carry out the induction step from t− 1 to t. We
fix vαt−1

= i. From the induction hypothesis, we know that there are
∑

A∈Comp(t−1)

(−1)t−s−1

(
n− 1 + σ1

σ1

)

. . .

(
n− 1 + σs−1

σs−1

)(
i− 1 + σs − 1

σs − 1

)

ways to choose the first αt−1 elements of the sequence. Let us look at the last αt − αt−1
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elements of the sequence:

i > vαt−1+1 ≤ vαt−1+2 ≤ · · · ≤ vαt−1 ≤ vαt
= j.

If i+ 1 ≥ j, there are
(
j − 1 + αt − αt−1 − 1

αt − αt−1 − 1

)

=

(
j − 1 + βt − 1

βt − 1

)

ways to choose the last αt − αt−1 elements of the sequence.
If i ≤ j, there are

(
j − 1 + βt − 1

βt − 1

)

−

(
j − i+ βt − 1

βt − 1

)

ways to choose the last αt − αt−1 elements of the sequence.
Therefore, the number of sequences v with a descent set I− = {α1, α2, . . . , αt−1}, last

element vαt
= j and elements from the set {1, 2, . . . , n} is

j∑

i=1

((
j−1+βt−1

βt−1

)
−

(
j−i+βt−1

βt−1

)) ∑

A∈Comp(t−1)

(−1)t−s−1
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
i−1+σs−1

σs−1

)

+
n∑

i=j+1

(
j−1+βt−1

βt−1

) ∑

A∈Comp(t−1)

(−1)t−s−1
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
i−1+σs−1

σs−1

)

=
n∑

i=1

∑

A∈Comp(t−1)

(−1)t−s−1
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
i−1+σs−1

σs−1

)(
j−1+βt−1

βt−1

)

+
j∑

i=1

∑

A∈Comp(t−1)

(−1)t−s
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
i−1+σs−1

σs−1

)(
j−i+βt−1

βt−1

)

=
∑

A∈Comp(t−1)

(−1)t−(s+1)
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
n−1+σs

σs

)(
j−1+βt−1

βt−1

)

+
∑

A∈Comp(t−1)

(−1)t−s
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
j−1+σs+βt−1

σs+βt−1

)

=
∑

A∈Comp(t)

(−1)t−s
(
n−1+σ1

σ1

)
· · ·

(
n−1+σs−1

σs−1

)(
j−1+σs−1

σs−1

)
,

which finishes the induction. �

In the next theorem, we derive an explicit formula for d∞(I, n). To do this we use
the result from the previous lemma.

Theorem 4.5. For the non-empty set I = {α1, α2, . . . , αt}, we define β = (β1, β2, . . . ,

βt) as in Definition 4.2. Then:

d∞(I, n) =
∑

A∈Comp(t)

(−1)t−s

(
n− 1 + σ1

σ1

)

. . .

(
n− 1 + σs−1

σs−1

)((
n− 1 + σs

σs

)

− 1

)

,

where, in the summation above, we sum over all compositions A ∈ Comp(t). Recall
that from Definition 4.3 the variables σ1, σ2, . . . , σs depend on A by the relation fβ(A) =
(σ1, σ2, . . . , σs).

Proof. From the proof of Proposition 3.2, we know that d∞(I, n) is equal to the
number of sequences v = (v1, v2, v3, . . . , vαt

), which satisfy the conditions:

• Des(v) = I−,

• vi ∈ {1, 2, . . . , n},

• vαt
6= 1.
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We can compute the number of sequences v by summing over all j from 2 to n in
Lemma 4.4. Therefore, we obtain that

d∞(I, n) =
n∑

j=2

∑

A∈Comp(t)

(−1)t−s

(
n− 1 + σ1

σ1

)

. . .

(
n− 1 + σs−1

σs−1

)(
j − 1 + σs − 1

σs − 1

)

=
∑

A∈Comp(t)

(−1)t−s

(
n− 1 + σ1

σ1

)

. . .

(
n− 1 + σs−1

σs−1

)((
n− 1 + σs

σs

)

− 1

)

.

�
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ОБОБЩЕНИЕ НА СПУСКАЩИТЕ СЕ ПОЛИНОМИ

Ангел Райчев

В комбинаториката спускащият се полином e функция, с която се изброяват

пермутации със специфични свойства. В последните години интересът към него

е подновен поради връзката му с други важни понятия в комбинаториката като

върхови полиноми и симетрични функции. Дефинираме функцията dm(I, n) като

обобщение на спускащия се полином и извеждаме явна формула за d
m(I, n),

когато m е достатъчно голямо.
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