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In this paper we review briefly some of the results in the area of anomalous diffusions
which are related to the anomalous aggregation phenomenon. Loosely, speaking this
phenomenon occurs when a particle moves in a milieu with obstacles which alter
so much its otherwise Markovian or diffusive motion that instead of free movement
throughout the environment the particle tends to spend a predominant proportion
of time in the vicinity of the strongest traps. This type of behaviour is observed in
systems such as human cells, polluted rivers, motion in porous media, etc. We also
offer some historic account on the appearance of anomalous diffusion in science and
the main contributions in this contemporary area of mathematics. We also present
our published results with Bruno Toaldo (Turin, Italy) on the topic of anomalous
aggregation in this very active field of research. We also discuss some open problems
and future directions for research which present a formidable technical challenge.

1. Introduction: history, background and definitions. Stochastic processes are
an important tool for modelling the world around us. Beginning with the fundamental
papers of Einstein [7] on the kinetic theory of molecules and of Bachelier [2] on the
probabilistic evaluation of stock prices on financial markets, the Brownian motion has
been widely used for modelling in physics, biology, economics, financial mathematics and
other areas of science. One of the most significant achievements of the application of the
Brownian motion is the approximation of the Avogadro’s number by Perrin [13], who has
been awarded the Nobel prize in part for this seminal work. Besides this the Black-Scholes
model, based on the Brownian motion, is at the core of modern financial mathematics
and thanks to uniqueness of the martingale measure it serves as the guiding point in the
advanced regulations of these markets. There are numerous other applications of this
stochastic process which we leave without any discussion.

The versatility of the Brownian motion for modelling originates from its universality
– if a large number of similar objects (molecules/particles) affect cumulatively and in
an independent way another object (larger particle/pollen) then its behaviour (motion)
is very well approximated in the limit by one and the same stochastic process (Brown-
ian motion) which is in addition analytically tractable. Despite the universality of the
Brownian motion the world is far too complex to be captured well by a single type of a
stochastic process. Therefore, researchers have come to consider Lévy processes - stochas-
tic processes that possess the same fundamental properties as the Brownian motion, that
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is stationarity and independence of the increments. Lévy processes offer great richness
for modelling by uniting in their domain compound Poisson processes, stable processes,
subordinators and for this reason they are used in all areas where the Brownian motion
itself has been employed, see the discussion in [1]. All stochastic processes that extend
the Brownian motion, but preserve its fundamental properties, are Markovian, that is
their future evolution depends only on their present state. However, the majority of real
world complex systems are expected to have a long-term memory. Since the treatise
of Richardson [14] on turbulent diffusion experimental results have amply demonstrated
that the Brownian assumption is inadequate for many systems. The clearest manifesta-
tion of non-Brownian behaviour is that, whilst for t units of time the Brownian motion
is expected to diffuse roughly

√
t units of distance away from the origin, many observed

complex systems exhibit average displacements of the type tα, α 6= 1/2, or even more ex-
otic ones, see the excellent reviews of Metzler and Klafter [11, 12]. Stochastic processes
that account for long-term time dependence and other characteristics that may poten-
tially violate the requirements of Markov processes and model displacements non-typical
for the Brownian motion are collectively known as anomalous diffusion.

Anomalous diffusion is a rich class of stochastic processes which cannot only account
for different properties of a complex system such as time-dependence, diversity and inter-
actions between individual elements, but also incorporates external forces, potentials and
boundary values. For this reason anomalous diffusion is adopted virtually everywhere
in modern science, see [8, 11, 12]. Typically, upon consideration of physical or other
laws, an integro-differential equation is proposed to describe the quantities related to the
behaviour of a system. If a stochastic process can be associated to this equation and
thereby represents the trajectories of the evolution of the system then these quantities
are of the form

P (Xt ∈ dx) = p(t, x)dx and E
(
u(Xt)

∣∣X0 = x
)
,

where X = (Xt)t≥0 is the stochastic process and the function u is a given observable.
The stochastic process, usually anomalous diffusion, is then investigated with the aim to
answer questions related to the asymptotic behaviour, the convergence to equilibrium, the
expected displacement, the evaluation of observables and the finer probabilistic structure
in the paths of the system.

In this short paper we are interested in a particular problem, namely the anomalous
aggregation phenomenon, that is of current interest in the area of anomalous diffusions.
To describe it we introduce some basic notation. Let M = (Mt)t≥0 be a continuous state

Markov process in Rd, d ≥ 1, and σ = (σs)s≥0 be an almost surely increasing real-valued
additive process, e.g. an increasing Lévy process (subordinator), which may or may not
be dependent on M . Then, if L(v) = inf {s ≥ 0 : σs > v} is the right-inverse of σ, a
semi-Markov process is defined as X = (Xt)t≥0 =

(
ML(t)

)
t≥0. Since L = (L(v))v≥0 has

levels of constancies such processes are ideal for modelling of the following anomalous
diffusive motion: let a particle move in an environment, whose motion, if unhindered,
would be free and would unfold according to M ; however, in the environment there
are obstacles that temporarily confine the particle according to the length of levels of
constancies of L after which it is released; then the motion is described by X. Note that
in this example independence of M and σ corresponds to homogeneity of the environment
whereas heterogeneity, that is space-dependent obstacles, requires dependence between
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position (M) and holding times (L = σ−1). When M is a strong Markov processe
and σ is independent of it subordinator the deep connection between time fractional
equations of the type of (1.1) (analytical viewpoint) and X (probabilistic viewpoint) is
well-understood, see Chen [6]. In particular, when M = B is a Brownian motion and

σ is an α−stable subordinator (it has the scaling property (σas)s≥0
w
= a

1
α (σs)s≥0 , a >

0, α ∈ (0, 1)), then

q := qt(x) = E
[
u(Xt)

∣∣X0 = x
]

is the strong solution to the time fractional equation

(1.1) ∂αt q =
1

2
∆q,

where ∆ is the space Laplacian, ∂αt is the fractional derivative in time and q0 = u is an
initial condition, see [3] for more information. For general X to model the anomalous dif-
fusion of systems in heterogeneous environments the assumption of independence between
M and σ ought to be relaxed. However, for X to have the capacity to model complex
real phenomena, which are often described by integro-differential equations stemming
from laws of nature, the essential connection between the probabilistic and analytic per-
spectives has to be preserved and the probabilistic properties of X need to be properly
elucidated. The latter has been one of the main goals of the paper [15] on which the
current article is built up and it is achieved by extending (1.1) to the heterogeneous
case. Once this is established in [15] we set out to investigate the anomalous aggregation
phenomenon which seems to have been firstly recognized and studied by Fedotov [5, 9]
in relation to the motion of a complex molecule within a cell. Mostly, these investiga-
tions have been numerical with strong heuristic analytical considerations as to why the
aggregation phenomenon can be rigorously proved. In [15] we prove that when M = B,
that is the free motion is Brownian, there are necessary and sufficient conditions for the
aforementioned phenomenon to occur.

2. Description of the main results and discussion. We start with the extension
of (1.1). For this purpose we rigorously introduce the stochastic process M , which is
defined as the sextuplet M = (Ω,F ,Fy,My, θy, P

x) and assumed to be a Hunt process
on
(
R,B

(
Rd
))

, Fy, i.e. it is right-continuous, y 7→ My is a.s. right-continuous, M
is normal and strong Markov with respect to Fy and quasi-left-continuous on [0,∞).
Hereafter, we shall further consider only the case when My is a Feller process, and thus
it possesses a semigroup of operators {Ty}y≥0 defined by (Tyu) (x) = Exu(My) satisfying

Ty : C0

(
Rd
)
7→ C0

(
Rd
)
, where C0

(
Rd
)

denotes the space of continuous functions on Rd
vanishing at infinity, and being strongly continuous in the sup-norm ‖·‖, i.e. ‖Tyu− u‖ →
0, as y → 0. The process (Ω,F ,Fy,My, σy, θy, P

x) will be an additive process with σy
one-dimensional, strictly increasing and constructed as follows: let D ∈ R+ × Rd be a
Borel set and let us introduce

µM (D) = l ({y ≥ 0 : (y,M(y)) ∈ D}) ,(2.1)

where l is the Lebesgue measure. For Borel sets D = A × S the measure µ computes
the amount of time l (A) spent by My in the set S ∈ B

(
Rd
)
. For fixed A we define by(

Rd,B
(
Rd
))

the occupation measure

µM,A(S) := µM (A× S).(2.2)
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Then we have the identity∫
A

u(M(y))l (dy) =

∫
Rd
u(x)µM,A(dx)(2.3)

which holds for every (measurable) non-negative function u on Rd. Therefore, we may
assume without a loss of generality, that for fixed A = [0, y], it holds that

Ex
[
e−λσ(y) |M(w), w ≤ y

]
= e−

∫∞
0 (1−e−λs)

∫
Rd ν(ds,w)dµM,[0,y](ω)(dw),(2.4)

where, for any w ∈ Rd, ν(·, w) is the Lévy measure of some non-decreasing Lévy process
(subordinator), and thereby it is supported on (0,∞) with the following integrability
condition ∫ ∞

0

(s ∧ 1)ν(ds, w) <∞(2.5)

being fulfilled, for any w ∈ Rd. Henceforth, if µM,A(dw) is absolutely continuous with
respect to l one furthermore deduces that

Ex
[
e−λσ(y) |M(w), w ≤ y

]
= e−

∫∞
0 (1−e−λs)

∫
Rd ν(ds,w)lM,[0,y](w)dw,(2.6)

where lM,[0,y](w) is the Radon-Nycodim derivative (local time of M at w). Certainly,
one can opt for a version of the local time such that lX,[0,y](w,ω) is a well defined r.v. for

every ω so lX,[0,y](w,ω) is measurable (R+×Ω 7→ Rd). We employ the following notation

Ex
[
e−λσ(y) |M(w), w ≤ y

]
= e−

∫ y
0
f(λ,Mw(ω))dw(2.7)

where the functions

[0,∞)× Rd 7→ f(λ, x) =

∫ ∞
0

(
1− e−λs

)
ν(ds, x)(2.8)

are such that λ 7→ f(λ, x) is a family of Bernstein functions parametrized by x ∈ Rd. We
emphasize that f(λ, x) can be regarded as the Laplace exponents of the subordinators
representing the increments of σ when Mw = x, see the monograph of Schilling et al.
[16] for a detailed account of the functional-analytic properties of Bernstein functions.

2.1. Integro-differential equation. Let Πt be the operator

(qtu)(x) := E [u(X(t)) | X(0) = x] .(2.9)

The first main result establishes a link between

t 7→ qtu,(2.10)

for suitable functions u, and the solutions to

d

dt

∫ t

0

(ρ(s, ·)− ρ(0, ·)) ν̄(t− s, ·)ds = Gρ(t, ·),(2.11)

where

(D·tρ(t)) (·) :=
d

dt

∫ t

0

(ρ(s, ·)− ρ(0, ·)) ν̄(t− s, ·)ds(2.12)

and, for any s > 0, x ∈ Rd,
ν̄(s, x) := ν((s,∞), x)(2.13)

and G is the generator of the already introduced Markov process M . Hereafter, we write
ρ(t) instead of ρ(t, ·) or ρ(t, x), when the dependence on the vector variable x ∈ Rd is
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vitally used. We then have the result.
Theorem 2.1. Assume that the strong Markov processes Mt and (Mt, σt) are Feller

processes associated with the semigroups of operators Tt and Pt. Let A be the generator
of Pt and assume that C∞c

(
Rd
)
⊂ Dom(G) as well as C∞c (Rd+1) ⊂ Dom(A) and so G

and A are pseudo-differential operators with bounded coefficients. Next, let x 7→ f(λ, x)
be continuous and such that

sup
x∈Rd

∫ ∞
0

(s ∧ 1)ν(ds, x) <∞.(2.14)

If, furthermore, the process is uniformly continuous in x at zero, we have that the mapping

[0,∞) 3 t 7→ q(t) := (qtu)(x)(2.15)

is a mild solution of (2.11) for any u ∈ C0

(
Rd
)
.

We proceed with the anomalous aggregation results.

2.2. Anomalous aggregation phenomenon. In this section we study the asymp-
totic behaviour of the process X(t) = B(L(t)) where B is a one-dimensional standard

Brownian motion. Therefore the generator is given by G =
1

2
∂2x and we assume that

ν(ds, x) =
α(x)s−α(x)−1

Γ(1− α(x))
ds, α : R 7→ (0, 1),(2.16)

that is the family of measures is given by the Lévy measures of stable subordinators, albeit
with variable index governed by the function α. Equation (2.11) takes the particular form

dα(x)

dtα(x)
q(t, x) =

1

2
∂2xq(t, x).(2.17)

We investigate rigorously the anomalous aggregation phenomenon for the semi-Markov
process, that is the time-changed Brownian motion, which is linked to (2.17) by the results
presented above. Generally speaking, under some relatively mild technical assumptions
on x 7→ α(x), our findings validate entirely the simulations in the work of Fedotov and
Falconer [10]. To be more precise we consider the asymptotic behaviour of two quantities,
that is

(2.18)

∫ t
0

1{X(s)∈A}ds

t
and P (X(t) ∈ A) ,

where A ⊆ R is typically some neighbourhood of the set where α attains its global
minima. Note that the first quantity measures the average time spend in A whereas
the second one is the probability of finding X in A at time t. Depending on the be-
haviour of l (A ∩ [−x, x]) , as x → ∞, we furnish criteria based on α∗ = min

x∈R
α(x), αI =

lim
x→∞

α(x), αJ

= lim
x→−∞

α(x) which separates, apart from the critical case, the two-regime behaviour

namely

lim
t→∞

∫ t
0

1{X(s)∈A}ds

t
∈ {0, 1} .

When the function α reaches its minima on some union of intervals we have been able
to determine whether lim

t→∞
P (X(t) ∈ A) converges to 0 or 1 thereby mathematically con-

firming the numerical findings in [10]. We wish to emphasize that the existence of a limit
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for the first relation in (2.18) does not necessarily imply the existence of the limit for the
second one. We strongly suspect that it is the case in this setting but we have not been
able to settle it in complete generality. We also think that “aggregation phenomenon”
can be established for other Feller processes, e.g. a stable process, and thus further
investigations in this direction are needed.

We start with the first result for the anomalous aggregation phenomenon. Then the
following theorem for the average time holds true.

Theorem 2.2. Let α : R 7→ (0, 1), α∗ = min
x∈R

α(x) > 0,max
x∈R

α(x) < 1 and

1 > lim
x→∞

α(x) = αI > α∗, 1 > lim
x→−∞

α(x) = αJ > α∗.

Also let there exist β0 small enough such that for all β0 ≥ β, the set

Aβ = {x ∈ R : α(x) < α∗ + β < 1}
is bounded and satisfies 0 < l (Aβ) <∞ and also l (∂Aβ) = 0. Then,

(1) if 2α∗ < min {αI , αJ} we have that for any 0 ≤ β ≤ β0

(2.19) lim
t→∞

∫ t
0

1{X(s)∈Aβ}ds

t
= 1, a.s.;

(2) and if 2α∗ > min {αI , αJ}, for any K > 0,

(2.20) lim
t→∞

∫ t
0

1{X(s)∈Acβ∩[−K,K]c}ds

t
= 1, a.s.

The next results concerns the probability of finding X(t) ∈ A for large times. It
requires some additional technical assumptions.

Theorem 2.3. Let α : R 7→ (0, 1) and A0 = {x ∈ R : α(x) = α∗} =
⋃
i

Ii, be bounded

and where Ii are disjoint intervals. Let also l (A0) ∈ (0,∞), l (∂A0) = 0 and for all small
β > 0, A0 = Aβ, where Aβ = {x ∈ R : α(x) < α∗ + β}. Finally, let α∗ = min

x∈R
α(x) >

0,max
x∈R

α(x) < 1 and

1 > lim
x→∞

α(x) = αI , 1 > lim
x→−∞

α(x) = αJ .

Then if 2α∗ < min {αI , αJ} it holds true that

(2.21) lim
t→∞

P (X(t) ∈ A0) = 1.

These two fundamental results are the following results [15, Theorems 4.12-4.13].
Note that both of them deal when A,A0 are bounded sets. This explains the condition
2α∗ < · · · as the expected time of the original Brownian motion B in those sets is of
order t1/2.

One may consider the case when any of the sets A, A0 is unbounded. In particular,
we study this situation under the condition.

lim
x→∞

x−cl (A ∩ [−x, x]) = a ∈ (0,∞) , c ∈ [0, 1)

and A unbounded. Consider A1 = A ∩ [0,∞) , A2 = A ∩ (−∞, 0). Assume further that

lim
x→∞

x−c1 l (A1 ∩ [0, x]) = a1 ∈ (0,∞)

lim
x→∞

x−c2 l (A2 ∩ [−x, 0]) = a2 ∈ (0,∞)
(2.22)
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and without loss of generality that 1 > c1 ≥ c2 ≥ 0. In this case, we say that A satisfies
the growth Assumption (G). We are now in a position to state the main result in this
case.

Theorem 2.4. Let α : R 7→ (0, 1), max
x∈R
{α(x)} < 1 and suppose that α∗ = min

x∈R
α(x) >

0. Assume further that A = {x ∈ R : α(x) = α∗ < 1} satisfies the growth Assump-
tion (G) with 1 > c1 ≥ c2 ≥ 0, see (2.22). Also let l (∂A) = 0 and A = Aβ =
{x ∈ R : α(x) < α∗ + β < 1} for all β > 0 small enough. Finally, set α◦ = min {αI , αJ},
where we have lim

x→∞,x/∈A
α(x) = αI and lim

x→−∞,x/∈A
α(x) = αJ . Then,

(1) if
2α∗

1 + c1
< α◦ we have that

lim
t→∞

∫ t
0

1{X(s)∈A}ds

t
= 1 a.s.,

lim
t→∞

P (X(t) ∈ A) = 1;
(2.23)

(2) if
2α∗

1 + c1
> α◦ then for any K > 0

lim
t→∞

∫ t
0

1{X(s)∈[−K,K]c∩Ac}ds

t
= 1 a.s.(2.24)

We see now that the condition depends in the growth of A, namely we have
2α∗

1 + c1
< · · · and c1 = 0 in the case of bounded sets.

2.3. Brief discussion on open problems and lines of future research. Finally,
we discuss some directions for future work. The natural step is to replace the Brownian
motion in the aggregation phenomenon case with more general stochastic processes. We
have attempted to use general stable Lévy process but even in this case the probabilistic
techniques we dispose of are not strong enough to prove anything meaningful. This prob-
ably means that general Feller processes are beyond reach unless one finds an alternative
approach perhaps from analytical perspective.

3. Sketches of the proofs. We begin with a short outline of the proof of Theorem
2.1. Set

v(t, x) =

∫ t

0

q(s, x)ds.

We aim to show that v is a solution to the integrated version of (2.11). The proof uses
the Laplace transforms

v̂ (λ, x) =

∫ ∞
0

e−λsv(s, x)ds; q̂(λ, x) =

∫ ∞
0

e−λsq(s, x)ds.

Then it is established that

λ (f(λ, ·)−G) q̂ (λ, x) = f(λ, x)u(x).

Using that

Gv̂(λ, x) =
1

λ
Gq̂ (λ, x)
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and plugging this above one gets

Gv̂(λ, x) =
f(λ, x)

λ
q̂ (λ, x)− f(λ, x)

λ2
u(x)

with
f(λ, x)

λ
=

∫ ∞
0

e−λtν̄(t, x)dt.

Then (2.11) follows by identifying the Laplace transforms.

We proceed with the brief exposition of the proofs for the theorems dealing with the
aggregation phenomenon. First we set up some notation. For any set A ⊆ R we use

(3.1) Ht(A) =

∫ t

0

1{Bs∈A}ds = µB,[0,t](A),

which for brevity we shall use Ht := Ht(A) when A is clear. Then, if l (∂A) = 0 < l (A)
then it holds, without a loss of generality, that

(3.2) σ (s) = σ1 (Hs) + σ2 (s−Hs) ,

where σ1, σ2 are two independent increasing processes constructed from σ as follows

σ1 (Hs) =
∑
v≤s

(σ(v)− σ(v−)) 1{Bv∈A}; σ2 (s−Hs)

=
∑
v≤s

(σ(v)− σ(v−)) 1{Bv /∈A}.
(3.3)

Denote next A+ = A ∩ R+, A− = A ∩ R− and assume without loss of generality that
A = A+. Also, we introduce

(3.4) G(t) :=

∫ t

0

l (A ∩ [0, x]) dx and D(s) = inf {t > 0 : G(t) > s} .

We use τ for the inverse local time at zero of the Brownian motion B. It is well-known
that τ is a stable subordinator of index 1/2. From [4, Chapter 9] we know that

(3.5) χ(t) := Hτ(t) =

∫ τ(t)

0

1{B(s)∈A}ds

is a driftless subordinator with Lévy measure say Πχ and Laplace exponent Φχ(u) =

− logE
[
e−uχ(1)

]
, u ≥ 0. Then, after some preliminary results, we show that

Proposition 3.1. If χ(1) has a finite mean or the Laplace exponent Φχ is regularly
varying at zero of index α ∈ (0, 1), then, for any ε > 0 small enough a.s.

(3.6) lim
t→∞

Hτ(t)

Ht2+ε
= 0; lim

t→∞

Hτ(t)

Ht2−ε
=∞.

The last proposition is useful as it connects the behaviour of H at fixed times to that
of Hτ(t) which is a tractable subordinator.

In the case of bounded sets we use specific versions of the quantities above, i.e. Because
neither of the asymptotic relations in (2.18) depends on finite time horizon we can without
loss of generality assume that A ⊆ R+ (the Brownian motion would pass below A for a
finite period of time) and lim

x→∞
l (A ∩ [0, x]) = a ∈ (0,∞). In this case in the notation of
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[4, Chapter 9] as t→∞

G(t) =

∫ t

0

l (A ∩ [0, x]) dx ∼ at

and thus as t→∞
D(t) = inf {s > 0 : G(s) > t} ∼ t

a
,

see (3.4). Then, according to [4, Chapter 9, Corollary 9.4 (ii)] we have that∫ t

0

Π̄χ(x)dx � t

D(t)

∞∼ a,

where Π̄χ(x) =

∫ ∞
x

Πχ(dy). Therefore, we are able to get the result.

Corollary 3.2. If A ⊆ R+ and lim
x→∞

l (A ∩ [0, x]) = a ∈ (0,∞) then a.s. for any

ε > 0

(3.7) lim
t→∞

Ht

t
1
2−ε

=∞; lim
t→∞

Ht

t
1
2+ε

= 0.

Next, we specify the asymptotic behaviour of σ1(Ht) or σ2(t−Ht) and compare it to
σ1, σ2 at deterministic times. From Corollary 3.2 we arrive at the following result.

Corollary 3.3. It holds true that, for any ε > 0,

(3.8) lim
t→∞

σ1 (Ht)

σ1(t
1
2+ε)

= 0; lim
t→∞

σ1 (Ht)

σ1(t
1
2−ε)

=∞, a.s.,

provided there exists α ∈ (0, 1) such that for any ε1 > 0 small enough a.s.

lim
t→∞

σ1(t)

σα(t)
<∞

lim
t→∞

σ1(t)

σα+ε1(t)
> 0,

(3.9)

where σβ stands for a suitable stable subordinator of index β ∈ (0, 1) defined on the same
path space as σ1.

These are the main ingredients of the proof which is however quite a bit involved and
we refer the interested reader to the paper [15]. Basically the idea is to find the main
asymptotic terms for the expected time and it this is done through suitable embedded
subordinators. The proof for the asymptotic behaviour of

P (Xt ∈ A)

is even more involved and this requires the additional technical assumptions which are
stated in the main theorem. We have tried hard to relax them but to no avail.
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НОВИ РЕЗУЛТАТИ В ОБЛАСТТА НА АНОМАЛНИТЕ ДИФУЗИИ

Младен Савов

В тази статия разглеждаме накратко някои резултати в областта на аномални-
те дифузии, които са свързани с феномена на аномалната агрегация. Най-общо
казано, това явление възниква, когато частица се движи в среда с препятствия,
които променят дотолкова нейното иначе Марковско или дифузионно движение,
че вместо да се придвижва свободно в средата, частицата прекарва основна част
от времето в областите на най-силните капани. Това поведение се наблюдава в
системи като човешките клетки, замърсени реки, движение в пореста среда и т.н.
В тази статия ние също предлагаме исторически обзор на появата на аномалните
дифузии в науката и най-основните приноси в тази активна област. Също така
разглеждаме резултатите добити с Бруно Тоалдо (Торино, Италия), които касаят
аномалната агрегация. В допълнение споменаваме и някои отворени проблеми и
посоки за бъдещи изследвания.
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