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In this survey we outline the milestones of several classical problems in Galois
theory: Noether’s problem, the inverse problem and the embedding problem. We
demonstrate the connection between these problems in the bigger context of the
invariant theory of finite groups. We also point out several new results of the author
and his collaborators regarding Noether’s problem and the embedding problem.

1. Invariant theory of finite groups. Invariant theory of finite groups has intimate
connections with Galois theory. One of the first major results was the main theorem on
the symmetric functions that described the invariants of the symmetric group Sn acting
on the polynomial ring K[x1, . . . , xn] by permutations of the variables. This theorem
appears to have been understood, or at least intuited and used, by Newton, as early as
1665. By the turn of the nineteenth century it was regarded as well known. For Galois
himself, it was the essential lemma on which his entire theory rested. However, it was
not properly proven or even precisely stated until the nineteenth century.

In the following, K will always denote an infinite field. (Usually, in invariant theory
it is assumed that K = C, the field of complex numbers.) Let W be a finite dimensional
K-vector space. A function f : W → K is called polynomial or regular if it is given
by a polynomial in the coordinates with respect to a basis of W . It is easy to see that
this is independent of the choice of a coordinate system of W . We denote by K[W ] the
K-algebra of polynomial functions on W which is usually called the coordinate ring of
W or the ring of regular functions on W . If w1, . . . , wn is a basis of W and x1, . . . , xn
the dual basis of the dual vector space W ∗ of W , i.e., the coordinate functions, we
have K[W ] = K[x1, . . . , xn]. This is a polynomial ring in the xi because the field K
is infinite. Appart from the common operations addition and multiplication in a ring,
K[W ] is a linear space over K, since we can multiply the polynomials with scalars from
K. Moreover, for any α ∈ K, f, g ∈ K[W ] the condition α · (f · g) = (α · f) · g = f · (α · g)
is satisfied. Such rings are called algebras.

As usual, we denote by GL(W ) the general linear group, i.e., the group of K-linear
automorphisms of the K-vector space W . Choosing a basis (w1, w2, . . . , wn) of W we can
identify GL(W ) with the group GLn(K) of invertible n × n matrices with entries in K
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in the usual way: The i-th column of the matrix A corresponding to the automorphism
g ∈ GL(W ) is the coordinate vector of g(wi) with respect to the chosen basis.

Now assume that there is given a subgroup G ⊂ GL(W ) or, more generally, a group G
together with a linear representation on W , i.e., a group homomorphism ρ : G→ GL(W ).
The corresponding linear action of G on W will be denoted by (σ,w) 7→ σw = ρ(σ)w (σ ∈
G,w ∈W ), and we will call W a G-module.

Definition 1.1. A function f ∈ K[W ] is called G-invariant or shortly invariant if
f(σw) = f(w) for all σ ∈ G and w ∈ W . The invariants form a subalgebra of K[W ]
called invariant ring and denoted by K[W ]G.

There is another way to describe the invariant ring. For this we consider the following
linear action of G on the coordinate ring K[W ]:

(σ, f) 7→ σf, σf(w) = f(σ−1w), for σ ∈ G, f ∈ K[W ], w ∈W.
This is usually called the regular representation of G on the coordinate ring. (The inverse
σ−1 in this definition is necessary in order to get a left-action on the space of functions.)
Clearly, a function f is invariant if and only if it is a fixed point under this action, i.e.,
σf = f for all σ ∈ G. This explains the notation K[W ]G for the ring of invariants.

Example 1.1. Let Sn denote the symmetric group on n letters and let us consider
the natural representation of Sn on W = Kn given by σ(ei) = eσ(i), or, equivalently,

σ(x1, x2, . . . , xn) = (xσ−1(1), xσ−1(2), . . . , , xσ−1(n)).

The symmetric group Sn acts on the polynomial ring K[x1, . . . , xn], and the invariant
functions are the symmetric polynomials:

K[x1, . . . , xn]Sn = {f | f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn}.
It is well known and classical that every symmetric function can be expressed uniquely

as a polynomial in the elementary symmetric functions σ1, σ2, . . . , σn (Fundamental The-
orem on Symmetric Polynomials). The existence part of the latter theorem can be for-
mulated also as follows:

Theorem 1.1. The elementary symmetric polynomials σ1, σ2, . . . , σn generate the
algebra of symmetric polynomials:

K[x1, . . . , xn]Sn = K[σ1, σ2, . . . , σn].

One of the fundamental problems in Classical Invariant Theory is the following:
Open Problem. Describe generators and relations for the ring of invariants K[W ]G.

This question goes back to the 19th century and a number of well-known mathemati-
cians of that time have made important contributions: Boole, Sylvester, Cayley, Hermite,
Clebsch, Gordan, Capelli, Hilbert.

Example 1.2. Let C2 = {id, σ}, the cyclic group of order 2, act on the n-dimensional
K-vector space W by σ(v) = −v (char K 6= 2). We are going to determine a system
of generators for the ring of invariants K[W ]C2 . Note first that f ∈ K[x1, . . . , xn] is
invariant under C2 if and only if f(x1, . . . , xn) = σf = f(−x1, . . . ,−xn). Hence the
invariants are the polynomials that are sums of monomials of even degree. (Recall that
the degree d of the monomial axd11 x

d2
2 · · ·xdnn is defined as d = d1 + d2 + · · · + dn.) In

particular, the monomials x2
1, . . . , x

2
n, xixj (i 6= j) are invariants. It can be shown that

any monomial of even degree is a product of these monomials, so K[x1, . . . , xn]C2 =
K[x2

1, . . . , x
2
n, xixj : i 6= j].
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2. Noether’s problem. In 1917, Emmy Noether published a seminal paper [19] on
the inverse Galois problem. Instead of determining the Galois group of transformations
of a given field and its extension, Noether asked whether, given a field and a group, it
is always possible to find an extension of the field that has the given group as its Galois
group. Noether reduced this to Noether’s problem, which asks whether the fixed field of
a subgroup G of the permutation group Sn acting on the function field K(x1, . . . , xn) is
always purely transcendental (i.e. rational) extension of the field K. Recall that a field
extension L of K is purely transcendental (or rational) over K if L ' K(x1, . . . , xn) over
K for some integer n, with x1, . . . , xn algebraically independent over K.

Example 2.1. The symmetric group Sn acts on the function field K(x1, . . . , xn),
and the invariant functions are the symmetric functions. According to the Fundamental
Theorem on Symmetric Polynomials K(x1, . . . , xn)Sn = K(σ1, . . . , σn). The elementary
symmetric polynomials are algebraically independent over K, so K(σ1, . . . , σn) is purely
transcendental over K, i.e., Noether’s problem has an affirmative answer for Sn over any
field K.

On the other hand, it is known that the answer is ’no’ for some G’s, even for an
algebraically closed K. For most G’s, as for example the alternating groups An with
n > 5, the problem remains open for every K. A more general version of Noether’s
problem asks, in Serre’s terminology [1, 33.1], whether the following property holds:

Noe(G/K): There exists a faithful, finite-dimensional, linear K-representation G ⊂
GL(V ) such that the extension K(V )G/K is rational.

Usually, Noether’s problem is formulated in this way: Let G be a finite group and
G act on the rational function field K(x(g) : g ∈ G) by K automorphisms defined by
g · x(h) = x(gh) for any g, h ∈ G. Denote by K(G) the fixed field K(x(g) : g ∈ G)G.
Noether’s problem then asks whether K(G) is rational over K.

Noether’s problem for abelian groups was studied extensively by Swan, Voskresenskii,
Endo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a survey of this
problem [27]. Fischer’s Theorem is a starting point of investigating Noether’s problem
for finite abelian groups in general.

Theorem 2.1. (Fischer [27, Theorem 6.1]) Let G be a finite abelian group of exponent
e. Assume that (i) either char K = 0 or char K > 0 with char K - e, and (ii) K contains
a primitive e-th root of unity. Then K(G) is rational over K.

Example 2.2. The cyclic group C2 = {1, g} acts on the function field K(x1, xg) by
g : x1 7→ xg 7→ x1. Define y1 = x1+xg, y2 = x1−xg. We have that K(x1, xg) = K(y1, y2)
and g : y1 7→ y1, y2 7→ −y2. It is easy to see now that K(x1, xg)

C2 = K(y1, y2)C2 =
K(y1, y

2
2) is rational over K.

The following theorem of Kang generalizes Fischer’s theorem for the metacyclic p-
groups.

Theorem 2.2. (Kang [4, Theorem 1.5]) Let G be a metacyclic p-group with exponent
pe, and let K be any field such that (i) char K = p, or (ii) char K 6= p and K contains
a primitive pe-th root of unity. Then K(G) is rational over K.

Recently, Michailov gave an affirmative answer to Noether’s problem for p-groups
having an abelian normal subgroup of index p.

Theorem 2.3. (Michailov [14, Theorem 1.8]) Let G be a group of order pn for n ≥ 2
with an abelian subgroup H of order pn−1, and let G be of exponent pe. Choose any
α ∈ G such that α generates G/H, i.e., α /∈ H,αp ∈ H. Denote H(p) = {h ∈ H : hp =
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1, h /∈ Hp} ∪ {1}, and assume that [H(p), α] ⊂ H(p). Denote by G(i) = [G,G(i−1)] the
lower central series for i ≥ 1 and G(0) = G. Let the p-th lower central subgroup G(p) be
trivial. Assume that (i) char K = p > 0, or (ii) char K 6= p and K contains a primitive
pe-th root of unity. Then K(G) is rational over K.

The key idea to prove such results is to find a faithful G-subspace W of the regular

representation space
⊕
g∈G

K ·x(g) and to show that WG is rational over K. The subspace

W is obtained as an induced representation from H. The list of groups which were
investigated regarding Noether’s problem is very extensive. We are not aware of a survey
or a monograph that covers most of the results obtained in this area. Recently, we have
proved the following

Theorem 2.4 ([16, Theorem 1.2]). For any prime p let G be a p-group of nilpotency
class 2, which has the AEC property (i.e. abelian extension of a cyclic group). Denote
by pe the exponent of G. Assume that (i) char K = p > 0, or (ii) char K 6= p and K
contains a primitive pe-th root of unity. Then K(G) is rational over K.

The latter result can be proven also via the obstructions to the related embedding
problem, given in the last section. This shows that there is another connection besides
the one discovered by Noether (that the positive solution of Noether’s problem always
implies a positive solution to the inverse problem). Namely, in this case the knowledge of
the obstruction to the related embedding problem can give us an answer when Noether’s
problem has a positive answer.

3. The inverse problem in Galois theory. The inverse problem of Galois theory
consists of two parts:

1. Existence. Determine whether there exists a Galois extension M/K such that the
Galois group Gal(M/K) is isomorphic to G.

2. Actual construction. If G is realizable as a Galois group over K, construct
explicitly either Galois extensions or polynomials over K having G as a Galois
group.

The classical inverse problem of Galois theory is the existence problem for the field
K = Q of rational numbers. The question whether all finite groups can be realized over
Q is one of the most challenging problems in mathematics, and it is still unsolved. If
Noether’s Problem Noe(G/Q) has an affirmative answer, G can be realised as a Galois
group over Q, and in fact over any Hilbertian field of characteristic 0.

In the nineteenth century, the following result was established:
Theorem 3.1 (Kronecker-Weber). Every algebraic number field whose Galois group

over Q is abelian, is a subfield of the cyclotomic field Q(ζ), where ζ is an n-th root of
unity for some natural number n.

The latter theorem was first stated by Kronecker (1853) though his argument was
not complete for extensions of degree a power of 2. Weber (1886) published a proof, but
this had some gaps and errors that were pointed out and corrected by Neumann (1981).
The first complete proof was given by Hilbert (1896). The proof can be found in most
books on class field theory. In the early 20-th century Hilbert’s 12-th problem on the
generalization of the Kronecker-Weber Theorem gained popularity. The history of the
12-th problem is explained at lenght in [21].
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The first systematic study of the inverse Galois problem started with Hilbert in 1892.
Hilbert used his Irreducibility Theorem to establish the following result:

Theorem 3.2. For any n ≥ 1, the symmetric group Sn and the alternating group An
occur as Galois groups over Q.

The first explicit examples of polynomials with the alternating group An as a Galois
group were given by Schur [23] in 1930.

The next important step was taken in 1937 by A. Scholz and H. Reichard [22, 20]
who proved the following existence result:

Theorem 3.3. For an odd prime p, every finite p-group occurs as a Galois group
over Q.

The final step concerning solvable groups was taken by Shafarevich [25], although
with a mistake relative to the prime 2. In the notes appended to his Collected papers, p.
752, Shafarevich sketches a method to correct this. For a full correct proof, the reader is
referred to the book by Neukirch, Schmidt and Wingberg [18, Chapter IX].

Theorem 3.4 (Shafarevich). Every solvable group occurs as a Galois group over Q.

Of the finite simple groups, the projective groups PSL(2, p) for some odd primes p
were among the first to be realized. The existence was established by Shih in 1974 and
later polynomials were constructed by Malle and Matzat:

Theorem 3.5 (Shih [26]). Let p be an odd prime such that either 2, 3 or 7 is a
quadratic non-residue modulo p. Then PSL(2, p) occurs as a Galois group over Q.

Theorem 3.6 (Malle & Matzat [7]). Let p be an odd prime with p 6≡ ±1 ( mod 24).
Then explicit families of polynomials over Q(t) with Galois group PSL(2, p) can be con-
structed.

For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu group
M23, have been shown to occur as Galois groups over Q by Matzat and his collaborators.
It should be noted that all these realization results of simple groups were achieved via
the rigidity method and the Hilbert Irreducibility Theorem. Extensive surveys of recent
developments regarding the classical inverse problem and its related problems can be
found for example in the monographs [2, 3, 5, 6, 24, 28].

4. The Fundamental Group of the Punctured Riemann Sphere. In this sec-
tion we are going to describe the structure of the fundamental group of the punctured
Riemann sphere. From its algebraic variant, we can easily obtain a solution of the in-
verse problem of Galois theory over C(t). After extension of the fundamental group by
complex conjugation one can also derive the solution of the inverse Galois problem over
R(t).

We begin with the Riemann sphere X := Ĉ. From this, a set of s points P :=
{P1, . . . ,Ps} is removed. For any choice of base point P0 ∈ X \P the topological
fundamental group πtop

1 (X \P; P0) relative to P0 is generated by homotopy classes of
nonintersecting loops γi from P0 counterclockwise around Pi (see Fig. 1).

By stereographic projection the punctured Riemann sphere X \P is homeoporhic
to the real plane from which s − 1 points are removed: X \P ' R2 \Q, where Q :=
{Q2, . . . ,Qs}. From Van Kampen’s theorem it follows that the topological fundamental
group πtop

1 (X \P; P0) is the free group with s − 1 generators. This can be shown
either by induction on the number of points, or by the homotopy equivalence between
R2 \Q and the bouquet of s − 1 circles (i.e. the wedge sum of k circles). Now, we can
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Fig. 1. Generators of πtop
1 (X \ P; P0)

put γ1 =

(
s∏
i=2

γi

)−1

and obtain that the fundamental group πtop
1 (X \P; P0) has the

following presentation:

πtop
1 (X \P; P0) = 〈γ1, γ2, . . . , γ2|γ1γ2 · · · γs = 1〉.

The only continuous automorphism of the field of complex numbers C is given by
complex conjugation, denoted here by ρ. If the set P introduced previously and the
base point P0 remain stable under ρ, i.e., if Pρ = P and Pρ

0 = P0, then ρ acts on
πtop

1 (X \P; P0). Indeed, assume that P consists of r pairs of complex conjugate points
P1, . . . ,P2r arranged first by decreasing imaginary part and then by decreasing real
part (in case of equality of the imaginary parts), and the real points P2r+1 < · · · < Ps.
Choosing the real base point P0 < P2r+1 we obtain Fig. 2.

Fig. 2. Action of complex conjugation
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With this standard arrangement, the homotopy classes of paths γi are sent to γ−1
2r+1−i

for i = 1, . . . , 2r, and γ2r+j for j = 1, . . . , s− 2r is mapped to

γ2r+1 · · · γ2r+j−1γ
−1
2r+jγ

−1
2r+j−1 · · · γ

−1
2r+1.

Therefore ρ acts on the generators of πtop
1 (X \P; P0) in this way:

(γ1, . . . , γs)
ρ = (γ−1

2r , . . . , γ
−1
1 , γ−1

2r+1, . . . , (γ
−1
s )γ

−1
s−1···γ

−1
2r+1).

The topological fundamental group πtop
1 has an algebraic analogue πalg

1 , for which how-
ever the convenient visualization as group of homotopy classes of paths is lost. Namely,
let K := C(X ) be the function field of X = Ĉ, or equivalently of the projective line
P1(C). Then K is isomorphic to the field of rational functions C(t) over C. Denote by
P(K/C) the set of prime divisors or equivalently valuation ideals of the function field
K/C. Then the set P ⊂ X corresponds to the subset S of primes of K/C whose
valuation ideal has a common zero at one of the points Pi.

Now let NS denote the set of all finite Galois extension fields of K, ramified only at
prime divisors of S, in a fixed algebraic closure K̃ of K. The union of all N ∈ NS forms
the maximal extension field MS of K (in K̃) unramified outside S. It is again Galois
over K, and for |S| > 1 finite, the Galois group is obtained as the projective limit of the
finite Galois groups Gal(N/K):

Gal(MS/K) = lim←−(Gal(N/K))N∈NS
.

This Galois group formally depending on K̂ is called the algebraic fundamental group of
X \P:

πalg
1 (X \P) = πalg

1 (X \P, K̂) := Gal(MS/K).

For the algebraic fundamental group we get the following profinite version of Riemann’s
existence theorem:

Theorem 4.1. The algebraic fundamental group πalg
1 (X \P) is isomorphic to the

profinite completion of the topological fundamental group πtop
1 (X \P; P0):

πalg
1 (X \P) ∼= π̂top

1 (X \P; P0).

Moreover for any choice of the base point P0 there exists a monomorphism

ι : πtop
1 (X \P; P0)→ πalg

1 (X \P),

such that πalg
1 (X \P) is generated as topological group by the images of the γi (where

ι(γi) is identified with γi):

πalg
1 (X \P) = 〈γ1, . . . , γs|γ1 · · · γs = 1〉̂.

Now, let the finite group G be generated by the elements σ1, . . . , σs−1, s ≥ 2. Then
there exists a continuous epimorphism ψ : Gal(MS/K) → G with ψ(γi) = σi for i =

1, . . . , s − 1 and ψ(γs) = (σ1 · · ·σs−1)−1. The fixed field N := M
ker(ψ)
S now yields a

Galois extension of K = C(X ) with Gal(N/K) ∼= Gal(MS/K)/ ker(ψ) ∼= G. This gives
a solution of the inverse problem of Galois theory over the field of rational functions C(t):

Theorem 4.2. Every finite group occurs as Galois group over C(X ) ∼= C(t).

5. The embedding problem in Galois theory. Let k be arbitrary field and let H
be a non simple group. Assume that A is a normal subgroup of H. Then the realizability
of the quotient group G = H/A as a Galois group over k is a necessary condition for
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the realizability of H over k. In this way arises the next generalization of the inverse
problem in Galois theory – the embedding problem of fields.

Let K/k be a Galois extension with Galois group G, and let

(5.1) 1 −→ A −→ H
α−→ G −→ 1,

be a group extension, i.e., a short exact sequence. Solving the embedding problem related
to K/k and (5.1) consists of determining whether or not there exists a Galois algebra
(called also a weak solution) or a Galois extension (called a proper solution) L, such that
K is contained in L, H is isomorphic to Gal(L/k), and the homomorphism of restriction
to K of the automorphisms from H coincides with α. We denote the so formulated
embedding problem by (K/k,H,A). We call the group A the kernel of the embedding
problem.

A well known criterion for solvability is obtained by using the Galois group Ωk of the
algebraic separable closure k̄ over k.

Theorem 5.1 ([2, Theorem 1.15.1]). The embedding problem (K/k,H,A) is weakly
solvable if and only if there exists a homomorphism δ : Ωk → H, such that α·δ = ϕ, where
ϕ : Ωk → G is the natural epimorphism. The embedding problem is properly solvable if
and only if among the homomorphisms δ, there exists an epimorphism.

Given that the kernel A of the embedding problem is abelian, another well known
criterion holds. We can define an G-module structure on A by aρ = ρ̄−1aρ̄ (ρ̄ is a
pre-image of ρ ∈ G in H).

Corollary 5.2 ([2, Theorem 13.3.2]). Let A be an abelian group and let c be the 2-
coclass of the group extension (5.1) in H2(G,A). Then the embedding problem (K/k,H,

A) is weakly solvable if and only if
Ωk
inf
G

(c) = 0

Next, let K contain a primitive root of unity of order equal to the order of the kernel
A. Then we can define the character group Â = Hom (A,K∗) and make it an G-module

by ρχ(a) = χ(aρ)ρ
−1

, for χ ∈ Â, a ∈ A, ρ ∈ G.

Let Z[Â] be the free abelian group with generators eχ (for χ ∈ Â). We make it an
G-module by ρeχ = eρχ. Then there exists an exact sequence of G-modules

(5.2) 0 −→ V −→ Z[Â]
π−→ Â −→ 0,

where π is defined by π(
∑
i

kieχi ) =
∏
i

χkii where ki ∈ Z.

We can clearly consider all G-modules as Ωk-modules. The exact sequence (5.2) then
implies the exact sequence

0 −→ A ' Hom(Â, k̄×) −→ Hom(Z[Â], k̄×) −→ Hom(V, k̄×) −→ 0.

Since H1(Ωk,Hom(Z[Â], k̄×)) = 0 (see [2, §3.13.3]), we obtain the following exact se-
quence

0 −→ H1(Ωk,Hom(V, k̄×))
β−→ H2(Ωk, A)

γ−→ H2(Ωk,Hom(Z[Â], k̄×)).

We call the element η = γc̄ the (first) obstruction. The condition η = 0 is clearly
necessary for the solvability of the embedding problem (K/k,H,A). This is the well-
known compatibility condition found by Faddeev and Hasse. In general it is not a sufficient
condition for solvability. Indeed if we assume that η = 0, then there appears a second
obstruction, namely ξ ∈ H1(Ωk,Hom(V, k̄×)) such that β(ξ) = c̄. Thus, in order to
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obtain a necessary and sufficient condition we must have both η = 0 and ξ = 0. The
second obstruction is very hard to calculate explicitly, though. That is why embedding
problems for which H1(Ωk,Hom(V, k̄×)) = 0 are of special interest. This condition turns
out to be fulfilled in a number of cases.

Let us begin with the so called Brauer problem. The embedding problem (K/k,H,A)
is called Brauer if Â is a trivial G-module. Then we have the well known

Theorem 5.3 ([2, Theorem 3.1]). The compatibility condition for the Brauer problem
(K/k,H,A) is necessary and sufficient for its weak solvability.

Let q ≥ 2 be a natural number, let k be arbitrary field of characteristic relatively
prime to q, containing a primitive qth root of unity ζ, and put µq = 〈ζ〉. Let K be a
Galois extension of k with Galois group G. Consider the group extension

(5.3) 1 −→ 〈ε〉 −→ H −→ G −→ 1,

where ε is a central element of order q in H. We are going to identify the groups 〈ε〉 and
µq, since they are isomorphic as G-modules.

Assume that c ∈ H2(G,µq) is the 2-coclass corresponding to the group extension
(5.3). The obstruction to the embedding problem (K/k,H, µq) we call the image of c

under the inflation map
Ωk
inf
G

: H2(G,µq)→ H2(Ωk, µq).

Note we have the standard isomorphism of H2(Ωk, µq) with the q-torsion in the Brauer
group of k induced by applying H∗(Ωk, ·) to the q-th power exact sequence of Ωk-modules
1 −→ µq −→ k̄× −→ k̄× −→ 1. In this way, the obstruction equals the equivalence class
of the crossed product algebra (G,K/k, c̄) for any c̄ ∈ c. Hence we may identify the
obstruction with a Brauer class in Brq(k).

Note that we have an injection µq ↪→ K×, which induces a homomorphism ν :
H2(G,µq) → H2(G,K×). Then the obstruction is equal to ν(c), since there is an iso-
morphism between the relative Brauer group Br(K/k) and the group H2(G,K×).

Clearly, the problem (K/k,H, µq) is Brauer, so from the proof of Theorem 5.3 given
in the paper [15] it follows that H1(Ωk,Hom(V, k̄×)) = 0. Hence the homomorphism
γ : H2(Ωk, A) → H2(Ωk,Hom(Z[Â], k̄×)) is an injection. Therefore, the problem is
solvable if and only if the (first) obstruction is split.

More generally, the following result holds.
Theorem 5.4. Let c be the 2-coclass in H2(G,µq), corresponding to the group ex-

tension (5.3). Then the embedding problem (K/k,H, µq) is weakly solvable if and only
if ν(c) = 1. If µq is contained in the Frattini subgroup Φ(H) of H, then the condition
ν(c) = 1 is sufficient also for the proper solvability of the problem (K/k,H, µq) (see [2,
§1.6, Cor. 5]).

Remark. The related terms weak solvability and Galois algebras were introduced
in order to avoid the trouble of describing some very rare exceptions. For example the
embedding problem related to the split exact sequence 1→ C2 → C2 × C2 → C2 → 1 is
’almost’ always solvable in term of fields. We need just to suppose that |k∗/k∗2| ≥ 4 so

that there exist a, b ∈ k such that k(
√
a,
√
b) is a C2 × C2 extension. However, formally

speaking, it is possible that |k∗/k∗2| < 4 and then obviously we can not define a C2×C2

extension. We can instead define a Galois algebra with Galois group C2 × C2 and say
that the problem is always weakly solvable.

The main goal is to decompose the obstruction to any µq-embedding problem as
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a product of classes of cyclic algebras. We denote by (a, b; ζ)q,k (or just (a, b)q) the
equivalence class of the cyclic algebra which is generated by i1 and i2, such that iq1 =
b, iq2 = a and i1i2 = ζi2i1. For q = 2 we have the quaternion class (a, b;−1), commonly
denoted by (a, b). For example, from the well-known Merkurjev-Suslin Theorem [9]
it follows that the obstruction to any µp-embedding problem is equal to a product of
classes of cyclic p-algebras (where p is a prime). The explicit computation of these cyclic
p-algebras, however, is not a trivial task.

In 1987 Massy [8] obtained a formula for the decomposition of the obstruction in the
case when F = Gal(K/k) is isomorphic to (Cp)

n, the elementary abelian p-group.
We proved similar results for p-groups in [10, 11, 12, 13]. Moreover, we were able to

find the obstructions for any group of nilpotency class ≤ 2.

Let q ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nt be natural numbers. Let L/K be a G '
t∏
i=1

Cni

extension. Assume that for all i, K contains a primitive ni-th root of unity ζni and a
primitive q-th root of unity ζ. Let Ki = K( ni

√
ai) be the subextension corresponding to

the factor Cni for i = 1, . . . , t and some ai ∈ K×. (That is, Ki is the fixed subfield of∏
j 6=i

Cnj .) Let σi be the generator of Cni for i = 1, . . . , t. We have that σj ni
√
ai = ζδijni

ni
√
ai

(δ is the Kronecker delta).

Theorem 5.5 ([17, Theorem 2.3]). Let L/K be a G '
t∏
i=1

Cni extension as described

above. Let

(5.4) 1 −→ µq ' 〈ζ〉 −→ H −→ G '
t∏
i=1

Cni −→ 1

be a central group extension with cohomology class γ ∈ H2(G,µq). Let s1, . . . , st be the
pre-images of σ1, . . . , σt, let dij ∈ {0, . . . , q − 1} be given by sisj = ζdjisjsi, and let
snii = ζmi for i = 1, . . . , t;mi ∈ {0, . . . , q − 1}. Then q divides dijni for all i, j : j 6= i,
and the obstruction to the weak solvability of the embedding problem (L/K,H, µ) given
by γ is

t∏
i=1

(ai, ζ
mi)ni ·

∏
i<j

(aj , ai)
dijni/q
nj .

If ζ ∈ 〈s1, . . . , st〉 then the obstruction is for the proper solvability.
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СЪВРЕМЕННА ТЕОРИЯ НА ГАЛОА И НЕЙНИТЕ КЛАСИЧЕСКИ
ЗАДАЧИ

Иво М. Михайлов

В това проучване очертаваме крайъгълните камъни на няколко класически
проблема в теорията на Галоа: ньотеровата задача, обратната задача и задача-
та за вложимост. Демонстрираме връзката между тези проблеми в по-широкия
контекст на теория на инвариантите на крайните групи. Също така посочваме
няколко нови резултата на автора и неговите сътрудници по отношение на ньо-
теровата задача и задачата за вложимост.
Ключови думи: Ньотеровата задача, задачата за вложимост, група на Галоа,
обратната задача
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