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There are different kinds of sorting algorithms. Each algorithm has its own ad-
vantages and disadvantages depending on the data they process. We are interested
in the performance of sorting algorithms in the case of construction of resolutions of
combinatorial designs. Studying their performance for this special class of problems
will give us the opportunity to improve, if possible, the speed of our software for solv-
ing similar problems. We use C++ and, for part of our investigations, the computer
algebra system GAP.
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Съществуват много и различни алгоритми за сортиране. Всеки алгоритъм има
своите предимства и недостатъци в зависимост от данните, които обработва. Раз-
глеждаме работата на някои алгоритми за сортиране при задачи за конструиране
на резолюции на комбинаторни дизайни. Проучването на тяхното представяне,
за този специален клас проблеми, ще ни даде възможност да подобрим, ако е
възможно, скоростта на нашия софтуер за конструиране на резолюции на комби-
наторни дизайни. Използваме C++ и също така, за част от нашите изследвания,
системата за компютърна алгебра GAP.
Ключови думи: сортиране, класификационен алгоритъм, резолюция на ком-
бинаторен дизайн.
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1. Introduction. This paper presents research on the applicability of a number of
sorting techniques in the classification of resolutions of combinatorial designs. For the
basic knowledge on resolutions of combinatorial designs refer, for instance, to [11].

Let V = {Pi}vi=1 be a finite set of points, and B = {Bj}bj=1 − a finite collection of
k-element subsets of V , called blocks. If any 2-subset of V is contained in exactly λ blocks
of B, then D = (V,B) is a 2-(v,k,λ) design. Each point is in r blocks.

A parallel class is a partition of set of points by blocks. There are q blocks in a
parallel class. A resolution of the design is a partition of the collection of blocks into
parallel classes. The design is resolvable if it has at least one resolution. Two resolutions
are isomorphic if there exists an automorphism of the design transforming each parallel
class of the first resolution into a parallel class of the second one. An automorphism of
a resolution is an automorphism of the underlying design which maps each parallel class
to a parallel class of the same resolution. The set of all resolution automorphisms is a
group.

Resolutions of combinatorial designs are used in different types of error-correcting
codes [10, 12], in network coding [14], cryptography [16] etc.

Part of the research on the topic has been done by computational methods. Many
interesting classification results are obtained by computer, for instance, in [1, 3, 20, 21,
23]. Some authors use classification algorithms based on canonical augmentation [2] and
also algorithms for computing of the code weight distribution in which no sorting is
needed [17]. Equally important the orderly generation algorithms are in use too [6, 7, 13,
26]. They are based on the backtrack search technique and thus are with exponential time
complexity. Nevertheless, for relatively small parameter sets and in combination with
specific parameter depending theoretical conditions, they can be very successful. Apart
from the use of theoretical restrictions, the algorithm implementation can be improved
by refining the computation too.

In this paper we are interested in the performance of an auxiliary algorithm, namely
the involved sorting algorithm. It appears in an orderly generation algorithm because it
is connected with a particular lexicographic order imposed on the constructed objects.
Sorted objects facilitate search and comparison and improve data operations efficiency.
This, together with the frequently great number of combinatorial objects which are con-
sidered, leads to the impact of time spent for sorting on the whole computation time.

There are different kinds of sorting algorithms. Their performance and parameters are
studied in depth by Knuth [15]. In our research we do not focus on their time complexity.
It is known for all of them. Also there are papers on comparative analysis of various
sorting algorithms in the general case [25, 30] and in case of data with a given specific
distribution [4, 22]. We are interested in the performance of comparison-based unstable
sorting algorithms suitable for the classification problems we consider. We study one and
two-dimensional sorting which appears in the construction of resolutions of combinatorial
designs. For each of them we apply a Cocktail Sort algorithm [15], the Introsort algorithm
[18] (the built-in function in C++ [24]) and the Pattern-defeating quicksort algorithm
[19] (the built-in GAP function [8]). For each sorting algorithm the maximal, minimal
and the average time for execution of the sorting tasks are measured.

2. Sorting problems. We consider the construction of resolutions of a given com-
binatorial design with a prescribed automorphism group of order i (Gi). The generation
method supposes the employment of a chosen lexicographic order. The elements involved
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in sorting are points or/and blocks of a particular combinatorial design. We can always
denote them by integers. Design points can be enumerated V = {1, 2, . . . , v}. Point
labels are used to define a lexicographic order on the blocks and next to assign numbers
to the blocks according to this order B = {1, 2, . . . , b}. The place and the size of a sorting
task depends on the particular problem we consider.

2.1. Problem 1. In [27] parallelisms of PG(3, 7) invariant under an automorphism
group (G49) of order 49 with some additional properties are constructed. They comprise
resolutions of the point-line 2-(400, 8, 1) design. It has b = 2850 blocks, each parallel class
has q = 50 blocks and a resolution has r = 57 parallel classes. The design is known and
the resolution construction starts with already lexicographically ordered design blocks.
One way to derive resolutions invariant under G49 is by construction of all possibilities
for parallel classes firstly. This can be done by backtrack search on the block orbits under
G49. These block orbits are considered on the lexicographically ordered design blocks.
Therefore the first block in each orbit is the smallest one but the other blocks appear
depending on the action of the considered automorphism group. Thus the blocks in each
orbit are not necessarily in lexicographic order. In this case a parallel class consists of
entire block orbits under G7 – a particular subgroup of G49 and hence its blocks cannot
appear in the chosen lexicographic order by construction. The structure of a parallel
class under the given above conditions is presented in the first row of Table 1. Here f
stands for a fixed under a particular G7 block while Oi

j denotes j-th design block from
the i-th orbit of length 7 under G7. The second row corresponds to a particular parallel
class with this structure. Each block is represented by its consecutive number in the
chosen lexicographic order. For the purpose of our research we work with 3000 parallel
classes. Each parallel class can be stored in a proper one-dimensional data container of
integers named Par class with size q + 1 = 51.

Table 1. A parallel class of a point-line 2-(400, 8, 1) design fixed by a G7

f1 f2 f3 f4 f5 f6 f7 f8 . . . O
5
1 O

5
2 O

5
3 O

5
4 O

5
5 O

5
6 O

5
7 O

6
1 O

6
2 O

6
3 O

6
4 O

6
5 O

6
6 O

6
7

9 58 142 212 240 331 359 429 . . . 716 1062 1408 1747 2093 2432 2778 779 1125 1471 1810 2156 2495 2841

2.2. Problem 2. In [28] the classification of point-cyclic resolutions of cyclic 2-
(45, 3, 1) designs is considered. A design is cyclic if it has a cyclic automorphism group of
order v. A resolution with an automorphism permuting its points in one cycle is called
point-cyclic. There are 11616 cyclic designs with these parameters [5]. It is well known
that G45 partition the design blocks in one short block orbit of length v/3 = 15 and
7 block orbits of length v = 45. For tightness of the stored data such a design can be
presented only by one block from each orbit (the smallest one in the chosen lexicographic
order). In our case 8 blocks are enough. Each design block is a triple of points. With
the agreement that the 8 block orbit representatives start with the first point they can
be written by the numbers of the other two points only. The designs are stored in a
file where each cyclic design corresponds to a row. The second row of Table 2 shows
one such record with 8 groups of numbers. At the third row the corresponding design
blocks are written. The first block represents the short orbit while the next 7 blocks are
representatives of the long block orbits. We want to construct all point-cyclic resolution
of this cyclic design.
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One approach is to start with getting all design blocks by G45. As can be seen from
the last block in each orbit (the last row of Table 2) a cyclic shift of the block points
leads to blocks with unordered points. The other problem is that if we write the orbits
one after another to obtain all 330 blocks of a considered cyclic 2-(45, 3, 1) design they
will appear not in the chosen lexicographic order. Therefore we need to perform two-
dimensional sorting on all design blocks. They can be stored in a proper two-dimensional
data container of integers named Deign blocks with size b+ 1 = 331 and k + 1 = 4.

Table 2. Block orbits of a cyclic 2-(45, 3, 1) design

orbit length short(15) long(45) long long long long long long

a record 16,31 2,4 5,13 8,22 7,29 11,27 10,33 6,19

block orbits 1,16,31 1,2,4 1,5,13 1,8,22 1,7,29 1,11,27 1,10,35 1,6,19

2nd block 2,17,32 2,3,5 2,6,14 2,9,23 2,8,30 2,12,28 2,11,36 2,7,20
last block 15,30,45 45,1,3 45,4,12 45,7,21 45,8,30 45,10,26 45,9,34 45,5,18

3. Sorting algorithms. Our programs are written in C++. Microsoft Visual C++
2022 is used and the results are obtained on on Intel i3-7100U @ 2x2.4 GHz. The data
we have to sort comprises only integers. Its entire size is fixed by the design parameters
and hence is known in advance. The records in which they are included are not so
long. The size of a Problem 1 like task is determined by q and usually is less than one
hundred. For a Problem 2 like task the size is limited by r or by b and for the parameter
sets we consider does not exceed one thousand. But the number of considered objects
typically is very big. For instance there are 14227090 possible parallel classes invariant
under a particular automorphism group of order 8 of the point-line 2-(156, 6, 1) design
(Problem 1 like task) and there are 2353310 cyclic 2-(57, 3, 1) designs (Problem 2 like
task). These are the reasons to choose as suitable for our investigations a Cocktail Sort
algorithm, the Introsort algorithm and one of the sorting algorithms included in GAP .
An orderly algorithm for construction of design resolutions generally includes one and
two-dimensional sorting therefore it will be more effective if the data is stored in one and
the same type containers for both problems.

3.1. Cocktail Sort. The Cocktail Sort algorithm (CSA) is based on the Bubble Sort
algorithm (BSA). A BSA passes through an array from the beginning (left) to the end
(right), compares elements and swaps them if their order is not correct [15, 24]. In the
first iteration the largest element is settled on its exact place. Next the second largest
element is moved to the right up to find its place etc. until all data is sorted. CSA does
the same but in both directions. The first iteration is the same as for BSA while the
second starts from the element before the just sorted one and goes from right to the left
such that the smallest element is settled on place. If N is the number of sorted elements
in the best case, the CSA time complexity is O(N) and in the worst case is O(N2) as is
for BSA. Nevertheless, there is an empirical analysis of CSA which shows that it is less
than two times faster than BSA [29].

We implement CSA for Problem 1 in a standard manner in the function CocktailSort

(int arg[], int right). An one-dimensional array of integers int Par class[q+1];

is used to store each parallel class in Problem 1. It is passed to the function as a pa-
rameter. Its length (right) also has to be passed because the one-dimensional sort
function is used for different data in many places in the implementation of our construc-
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tion algorithm. For Problem 1 the function is called in the following way: CocktailSort
(Par class, q);.

For Problem 2 design blocks are stored in int Deign blocks[b+1][k+1] – a stan-
dard two-dimensional array of integers. It is passed to the function as parameter but
further CSA needs one more parameter. For a particular sorting task regarding design
parameters it is known in how many positions two rows of the two-dimensional data array
differ. The parameter dept depends on the number of these positions. The function dec-
laration is CocktailSort(int arg[][k+1], int right, int dept). Before swapping
two unlike elements in position dept of rows i and i+ 1 we have to check if they coincide
in all positions before dept. Thus for Problem 2 the function is called as:

for (int i = 1; i < k; i++)

CocktailSort(Deign_blocks[][k+1], b, i);

3.2. Introsort. Introsort (Introspective sort) is a hybrid sorting algorithm incorpo-
rating Insertion sort for small set lengths, Heapsort for a recursion depth greater than a
particular level and Quicksort in all other cases. More about the algorithm can be found
in [18]. This combination ensures good time complexity in the worst and in the average
case O(N logN), where N is the number of sorted elements.

In our algorithm implementation we use the Introsort algorithm incorporated in
the C++ Standard Library as a built-in std::sort() function. It is included in the
<algorithm> header file of C++. The sort() function cannot be used with a fixed
two-dimensional array because an array cannot be assigned to another array. Therefore
to apply the Introsort algorithm by the sort() function the data should be stored in
std::array or std::vector classes. The main difference between them is that the first
class is a fixed-size container while the second is a dynamic one. We use vectors but
since the size of the data is known in advance the dynamic properties of the vectors are
not employed here. This is important because a vector growth can lead to growth of the
processing time.

Each parallel class in Problem 1 is stored in a vector vector<int> Par class(q+1);

and the design blocks in Problem 2 are written in a vector of vectors vector<vector<int>>
Deign blocks(b+1, vector<int>(k+1));. The range of sorting is given by iterators to
the begin and to the end of the corresponding vector. We do not specify the function’s
third parameter as ascending order is used by default and it is suitable for the considered
objects. Thus for Problem 1 we have sort(Par class.begin(), Par class.end());

and for Problem 2 sort(Deign blocks.begin(), Deign blocks.end());.
3.3. Sorting data in GAP . The system for computational discrete algebra (GAP )

is a freely distributed software. It is especially useful in group computations. Generally
we use GAP to obtain the required for the constructive algorithm automorphism groups
and their subgroups. In this paper we employ GAP in the needed sorting task. Three
different sorting algorithms are involved in GAP . We apply the default one which is
implemented in GAP ’s function Sort(). It comprises the Pattern-defeating quicksort
algorithm [19]. This quicksort modification is a hybrid sorting algorithm which contains
the same sorting algorithms as Introsort, but with a different combining strategy. A novel
scheme for partitioning in the quicksort part of the algorithm and a concept of a bad
partitioning instead of exploiting a recursion depth are among the divergences from the
Introsort algorithm. For a few common patterns this sorting algorithm achieves linear
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time complexity but in all other cases its time complexity is like that of the Introsort
algorithm.

The syntax of the function is Sort(list,func) [9]. The parameter func gives the
rule for comparing the elements and is omitted if the regular ascending order is adopted.
Therefore to do necessary sort tasks in GAP we have to store our data in data structure
called list. Its elements are written between square brackets [ , ] and separated by
commas. For Problem 1 the sort function is called as Sort(Par class);. For Problem
2 the data is stored in list of lists. We need to define a specific sorting function which
answers how to compare two sub-lists that coincide in the first position. In this case the
sort function is called as follows:

Sort(Deign_blocks, function(v, w)

return v[1] < w[1] or (v[1] = w[1] and v[2] < w[2]);

4. Comparison. The times taken by the execution of each of the considered sorting
algorithms for the problems mentioned above are given in Table 3. For each of them
the minimal, maximal and average time for sorting an object is presented. To be more
precise we get the running time in five identical trials. The values in the table are the
averages of these trials.

It looks like the Introsort algorithm implemented in C++ standard library has the
best performance in the case of the one-dimensional Problem 1. Our Cocktail sort algo-
rithm implementation is almost two times slower. The data size here is relatively small
thus this result can be expected. The minimal time for one-dimensional sorting is the
best for the Cocktail sort algorithm implementation because it refers to a case of almost
sorted object.

For the two-dimensional Problem 2 the implementation of the Pattern-defeating quick-
sort algorithm in GAP is with the best performance. In this case our Cocktail sort algo-
rithm implementation is almost 13 times slower. In Problem 2 we have to process 11616
objects so this difference is very important.

Our investigation shows that the implementation of the main constructive algorithm
should better use the sort function from the C++ standard library. Thus the standard
C++ arrays have to be replaced by vectors. Another possibility is to use the Pattern-
defeating quicksort algorithm implementation for C++ which is under a zlib license and
can be found at https://github.com/orlp/pdqsort.

Table 3. Times taken by the considered algorithm
implementations in microseconds

Task Algorithm min max average

Cocktail sort 1 30999.7 50.4
Problem 1 std::sort() 6.4 7700.4 27.3

GAP Sort() 12.4 670 37.8

Cocktail sort 8844.4 186013.6 13307.5
Problem 2 std::sort() 1588.6 115924.8 3092.2

GAP Sort() 643.3 51162.7 1064.7
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