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Embedding A () into A, (x)
and Some Consequences
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In this work we study the exponent sequences « for which A, () is embeddable into A, (). We show
that in this case « is necessarily weakly stable but weak stability is not sufficient in general. However
we prove the following:

If A, (2) is isomorphic to a subspace of A, (2) spanned by a block basic sequence then a is stable,
the converse of which is well known. We also give equivalent conditions in terms of embeddings of

power series spaces for weak stability of an exponent sequence.

1. Introduction and preliminaries

A matrix (ay) with i) 0= a4y, < a4+ 1.0 11) SUp, a, >0 for every n, k is called a
Kothe matrix and the sequence space E= K (a) = 1(En): 1 (E) k=2 | & l0txn
<+ oo\ﬂ\} topologized by the seminorms (|| - [|,) is called a K6the space. In
the sequel we shall assume E is nuclear and has a continuous norm, and hence

every (a.,) will be assumed to satisfy 1).0<ay,<ayiqn 2) V kI m(ayn/amn)sely-
A Kothe space E is Frechet (metrisable, complete Ictvs**) and the sequence (e,,),
e,=(0,...,0,1,0,...) with appearing at the n-th entry, forms a basis for E. A step
space EI(,, ,—K (akn) is the (closed) subspace of E generated by a subsequence
(e, ) and step-spaces are always (topologically) complemented. We say E is of
type dy i=0, 3, 5, if E is generated by some (ay,) with:

(do) For each k, (ay . ,./ax,), is nondecreasing (in this case E is also called
regular; if the ratio is strictly increasing than strictly regular).

(d3) For each k, n (a4, ,)*<ay, Ay,

(ds) E M=1 with gy /an =2/ )™ VY k, n. :

A Kothe space E is called a G_-space if it is glven by a Kothe matrix (ay,)
which satisfies 1) a,,=1 V n; 2) V k 3 m with sup az,/a,, < +0; 3) (a,), 1s
non-decreasing in n for each k. The special Kothe spaces Ag(x)= K exp (—«,/k))
and A (2)=K (exp(ka,)) are called power series spaces of finite resp.

*This work is partially supported by The Scientific and Technical Research Council of
Turkey.
**ocally convex topological vector space
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infinite type. Here a=(x,) is a sequence of positive real numbers increasing to
oo rapidly enough so that the resulting space is nuclear. Such sequences will be
called exponent sequences. The nuclearity condition is equivalent to: lim,
log n/a, =0 resp. sup, log n/a, < + oo for finite resp. infinite types. We note also
that replacing (— 1/k) resp. (k) by any (r,) resp. (s,) where r, increases strictly to 0
and s, to infinity does not alter the corresponding space or its topology.
Moreover, if (r,) increases strictly to some r< + oo, then A,(x)=K (exp(r;a,))
= A, () (topological isomorphism). Consequently, we shall use A, (x) or A, (x)
without any further distinction. If « is equivalent to some exponent sequence
B.denoted by a~p, that is sup,a,/B,<+ oo and sup,f,/a,< +co then A,()
=A,(B) t=0,00 and the topologies coincide. An exponent sequence « is called
weakly stable if sup,a,;,/a,<+ 00 and stable if sup,a,,/a,< +co. It
follows that « is weakly stable (resp. stable) if and only if E x K ~ E (resp. E x E
= E), where E=A,(x), t=0 or t=oo0.

A sequence (x,) in E=K (q,,) is called a basic sequence if it forms a basis
for its closed linear span. Any subsequence of (e,) is a basic sequence. A more
general class of basic sequences is given by X,=ZXjen lin €, Where t;, are scalars
and (N,) is a collection of pairwise disjoint, non-empy, finite subsets of N. A basic
sequence of this form is called a block basic sequence. :

If E= K (b,,) is isomorphic to a (closed) subspace of F=K (a,,) and if Te,
= X2 ,t,f; is an isomorphism T:E—F then, using the sup-norms, Il Ilx
=sup,|x,|a,, if x=Xx,e,eE, which generate the original topology of E by
nuclearity, we obtain the fundamental inequality (cf. [4]):

ajqk"/aqu" é bjn/bkn é ajqj"

/akan YV k, j, n,

where | Te, Il,‘=sup,-|t,,,~|ak,.=|t,,qk |a'“l:m' Here obviously the supremum is
attained at some indices; g, is taken to be the largest of such indices. It then
follows that q,,<q¢;+,, Vv n k (cf. [4]). The next lemma serves as a partial
converse, in that it tells us that we can construct sums where the g,,’s can be
controlled: (Cf. [4]).

Lemma 1.1. Let (ay,) be strictly regular, g, <q,< ... <gq,, be natural numbers,
{ty,k=1,2,...,m} be real numbers with ty, #0. Then if

i1,/ W+ 1.9y, = N2, Lo | <Oig /O, , ,

holds for k=1,2,..., m—1 then sup{ltqkl a
s=1,2,...,m

For concepts, terminology and results not explained and as general references
we refer the reader to [4], [S] or [6].

We state below some observations and characterisations which are simple
consequences :

sar s k=1,2,...,m}=|t, | a,_for

Lemma 1.2. An exponent sequence o is weakly stable if and only -if o~ 8, where
B is defined by B,= A" if r,<n=r,,,, for some A>1 and some subsequence (r,) of
natural numbers with r,=0.
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Proof: Since sufficiency is trivial, suppose « is weakly stable, say
SUP, 4 1/dn =A< +00. Let ry =0, r,=max {s: a;< A"} for p>1. Then since « is
non-decreasing, (r,) increases strictly. Define f§ by p, = A" forr,<n<r,,,,.p=1,2,
Then if r,<n<r,,, one has: oz,,//f,,§a,p+l/A”<A and

ﬁ,,/a <APla, SAP Yo, o, =A so a~f
Note '1.3. From pnow on, for a weakly stable exponent sequence «, a
sequence 8 obtained from Lemma 1.2, will be called a standard form of « and
we shall stick to the above notation, i. e. A and (r,) will have the above meaning.

Lemma 1.4. An exponent sequence o is-stable if and only if it has a standard
form with r,.,=2r, ¥ p.

Proof: Since sufficiency of the condition is obvious suppose « is stable, say
sup, ,,/a,=A<+oo. Let r,=max {s: a,<AP}, r;=0. Then oy, = A, <Ar*1
gapﬂﬂ SO 2r,=rpiq- The rest of the proof follows as in Lemma 1.2

Lemma 1.5. If a subsequence (a,) of o is weakly stable, then o itself is also
weakly stable.

Proof: Immediate.

Remark 1.6. The conclusion of Lemma 1.5. is false if “weakly stable” is
replaced by “stable”. In fact it can be shown that a subsequence («, ) of « is stable
if and only if « has a standard form with r,,, =r,+ 2P, which obviéusly. does not
imply the condition of Lemma 1.4.

2. Some embedding theorems

Proposition 2.1. Let E=A _(x) where a is weakly stable. Then any F =K (a,,)
of type dy has a step space which is isomorphic to a subspace of E.

Proof: Suppose sup, o, /a,=A<+ 0. Let (b;,) be a representation of F
satisfying (ay+ 1 »/n) S s 2.0 /@41, for all k, n and lim, A/ +1.n="0 for all k

(cf.[4]).

Claim: For any mq, g, there exist m>mq, 4o <qym< . . . <qmm satisfying
(1) exp(aqkm§bk+l_,,,/bk,,,<exp(quk+l'm) k=1, 2, . . ., m—1
Proof of claim: Let m be the smallest index with m>m, and exp (o, + V)
<b,,/bim To construct (g;,), i=1, 2, ., m, inductively, let gq,,,=¢qo+1 and
supposing go <gm< - - . <{im are deﬁned so that (1) holds (q,,, satisfies only the
left inequality), let g, ., be the smallest index with b,‘+1 m/bkm<exp(aqk“ 2
Then we have:
1) Z Bk s 1 m/Orm)* Sbics 2.m/brs 1o

exp (o <exp(Aa

qk+l.m) dk +1,m
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hence the left inequality of (1) also holds for k+ 1. This completes the induction
step and hence the proof of the claim. Now we construct two subsequences, (n;)

and {qy; ..., qi} for each i as follows: Let n; be such that exp(22) = bz, /b1n,
holds. Let g,, =2. Suppose n; and (q,;)i-, are chosen. Usmg our claim with m,
=n;, qo=4q;;, we find indices n;, ; >n;and ¢;<q; ;4+1 < ... <{g;+1,i+1 SO that (1) is
satisfied.

We set t, =b,, /exp(k a, ) and define y,==i_, Lg,; €a,; L€ N. Since q.i's all
distinct, (y;) is a block basic sequence in E and hence generates subspace of E.
Now putting bk"ithki exp (koch.,) in (1) for each fixed i, we obtain

exp ((k + l)quki)/exp ((k + l)aqk +1 .i) = tqk +1 .i/tqki

<exp (kaqki)/exp (koch 1 _i)
k=1, 2, . . ., i. It follows by Lemma 1.1. that
Il y; ||k=SUP{|tqm,. exp(ka, ) m=1, 2, . . ., i}=bk,,l,
k=1, 2, ..., i We conclude that K(b,,) is isomorphic to a subspace of E.

Proposition 2.2. Iet E=A, (x) where a is weakly stable. Then any F = K (by,) of
type ds has a step space which is isomorphic to a subspace of E.

Proof: Suppose sup, o,;,/a,=A<+oco and (b,,) satisfies
by + l.n/bkn =(by+ 2.n/bk+ 1,..)M YV k n

and for some M > 1. Construct (p,) which strictly increases to infinity by p, =1
and

Pis1— Pk+z<(AM)_

pr ' =P
Claim: For any m,, g, there exist m>mg, qo<q1m< - .. <{gmm satisfying:
(2) exXp ((pk_ ! _pk—+ll) aq‘m)ébk+ l,n/bkn <exp ((pk_ ! —plg_+ll)aqk+ 1'")

for k=1, 2, . . ., m

Proof of claim: Let m be the smallest index with m>m, and exp((p; !
—p5 )ocq +1)=b,,./b;.. We choose (q,,) inductively by q,,,=q,+ 1 and supposing
Aim<gom< - - . <qim are chosen satisfying (2) (g, satisfies only the left inequality
in (2)), we let g . ., be the smalles index which satisfies the right inequality of (2).
Then g4, <qi+1., and

2. Mathematica Balkanica, 1, 1987
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oxp (i — o) o, )Sexp (AM)™* (o —piky) Aay, | —1)
<(by+ l.n/bkn)l/M Sbii2.n/bk+1.n

so the left inequality in (2) with k+ 1 is also satisfied and the induction step is
concluded which proves the claim.
The rest of the proof is completed similar to the proof of Proposition 2.1.

Theorem 2.3. Iet E=A,(x). Then the following are equivalent:

i) a is weakly stable;

ii) There exists a weakly stable space A (B) which is isomorphic to a
subspace of E; .

iii) There exists a weakly stable space A,(B) which is isomorphic to a subspace
of A,(a), t=1, o0

iv) Every A, (B) has a step space which is isomorphic to a subspace of E;

v) Every A,(B) has a step space which is isomorphic to a subspace of E;

vi) Every A (B) has a step space which is isomorphic to a subspace of A, (o);

vii) Every K (a,) of type ds has a step space which os isomorphic to a

subspace of E;
viii) Every K (a,) of type d3 has a step space which is isomorphic to a subspace

of A ().

Proof: The implications i—iii— vii, viii; vii—>iv, v; vili—vi; ii—iv are either
trivial or conclusions of the previous propositions. We need to show i—ii and
each of iv, v, vi—i. To show i—ii we suppose that sup, a,/®,=A <+ oo and let
B,=A". Then A (p) is isomorphic to a subspace of A, (B) by Corollary 4.3 pp. 77
in [4] and since B is equivalent to a subsequence of « by Lemma 1.2. this proves ii.
To prove the remaining implications iv, v, vi—i, suppose a is not weakly stable.
Then there is a subsequence (oc,,l,) of o with lim; a,,',/a,,i+ 1=0. Let B;=(0t,+1 a,,i)*.
Arrange the sequences o and f into a single sequence in a non-decreasing way:

. §a”i<ﬂi<tx,i“< . . .. Then lim; a,,i/ﬂ,-=lim,- B‘/a,,i+l=0.

From [2] this is the exact condition for every linear continuous mapping
T:A, ()= A, (o) to be compact, t=1, co. So v, vi cannot hold. Moreover, this
condition also implies that every linear continuous mapping T: A, (B)—A, () is
compact by [3] so iv cannot hold.

Proposition 2.4. A G, space E is either isomorphic to a weakly stable A, () or
contains no subspaces isomorphic to any weakly stable A, (p).

Proof : Suppose there exists a weakly stable A (8) which is isomorphic to a
subspace of E. Then by a theorem of M. S. Ramanujan and T. Terzioglu [7]
E itself is isomorphic to some A (x). So the condition iii of Theorem 2.3. is
satisfied so « must be weakly stable.
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We next consider the problem of embedding A (x) into A;(«). We start with
a technical lemma:

Lemma 2.5. Iet E=A_(B) be isomorphic to a subspace of F=A,(x). ILet
T: E—F be the embedding given by Te,=y,=X,; t,; f, where (e,), (f,) denote the
coordinate bases in E resp. F. ILet (s;), (p,) be sequences of positive numbers strictly
increasing to infinity so that with

Ayp =CXp ( - an/sk)9 blm = | tnqk" Iaqu"' Cxn=C€Xp (pkﬂn)

the inequality ¢, <b,, < Cy+ 1., is satisfied for each k and for large n. Without loss of
generality assume «,=7y, for r,<n=r,.,, where inf, y,,,/y,>1 and (r,) is a
subsequence of natural numbers. Then:

1) If for each k, n we denote by z,, the unique index satisfying o < =Tz +1
then ¥ p 3 n, such that suP,.n, Max {k: z,=z,}<+o0 ;" "

il) WV s '3 kg such that the set {n: g, s,,-—-ngsli is at most finite.

Proof: i) Suppose the conclusion does not hold. Then there is a p for which
we can construct a subsequence (n;) of N with Max {k:z,‘,,i=zp,, 1} =j for all j. Now
since q,, and hence z,, are non-decreasing in k for a fixed n, if follows that
Zpmy = Zpttim; =+ =, and hence for any k, k' with p<k=<j and p<k’'<j we

h = = in:
ave o, =0, =%, SO We obtain

I t"jqknj I = bkn/akq,‘njz- I t"jqk’nj laqu'nj/aqunj = | t"jqk'nj I

Ther.efore by symmetry |¢, ﬂwl =|t, ﬂ"f"ll and hence b,‘,,1=|t,l ﬂp..jlalwmv j=k(=p).
Passing to a subsequence of (n;) if necessary, we can assume q,,,,l#q,,,, 7 for
Jj#j', which means that Aw(ﬁ,,j) is isomorphic to Al(ocqpn which means that
A, (B, j) is isomorphic to Al(“qp,, which is a contradiction since any linear
continuous mapping T' A, (a)—>A_ (b) is compact for any a, b (cf. [8]).
ii) Assume the conclusion does not hold. Then each M, ={n: q,,—n <s}
is infinite. Moreover, since q,,<¢gx+1..» A n, k we have M, >M,,,. Choose a

diagonal sequence (n;) with
(3) Qin, — ;=S vV jzk
Then by the fundamental inequality we obtain:
eXP [(Px+1— Pi) Bul = Cic+ 1./Cin = it 1 n/br— 1.
SOty /0ty ,=XP L =85 ) o, ]

that is, for large n we obtain
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@) Bju, <SS,
kn ™ Pr+1— Pk

Fix k,>1. By part i with p=k, we find indices my, and k; with z; 14 ,>Zk;n
v nzZmy . Applying part i with p=k, +1 then we find my and k, etc. Hence after
successive applications we obtain:

) V qg 3k, and e, with z, +1">zk0,+q v ngm,‘q_1

By the hypothesis there exists some B> 0 such that sup, «,/8,=B< + oo (cf. [4]).
Let s, be large enough so that BC,‘0<ASO“S'1 holds. Let jbe large enough so
that (5) holds with n=n; and g=s,, (4) holds for k=k, and n=n;, (3) holds for k
=k50+1. Then we obtain:

so—s— 1< _ < _
Bck0<A =yzkonj+30 s/y’konj=y’kso+l.nj S/aqkonj

0+1,nj—s/a

<B B, <B B, /uy,, SBCy,

ko j
n

which is a contradiction.

Proposition 2.6. If A, (x) isomorphic to a subspace of A, () then o is weakly
stable.

Proof : Weuse the notation of Lemma 2.5. By part (ii) of lemma!2.5. wetfind
ko so that the set {n: Qign = <n} is finite. Let so=Max {n: A, .=n}+1. By part i of
Lemma 2.5. find k, and s; such that z; ,>2zy . holds V n=s,. Then clearly
Ak n> Qign: On the other hand, by the fundamental inequality we obtain
Sup, g, /0, =0Qx< + 0 for any k. Let m;=Max {so, S;, Dx } and define (m))
inductively by m; = ieym; . Then m;_ 1_CIk0m <dkym;_, =M, and with ¢;=a,,,
we have sup;g;;./€j =supj %y, m/ m; le<+oo Havmg a weakly stable
subsequence, by Lemma 1.5. the sequence o is itself weakly stable.

Proposition 2.7. If E=A, («) is isomorphic to a subspace of F=A, (o) spanned
by a block basic sequence then « is stable.

Proof: By Proposition 2.6. « is weakly stable so assume o is given in a
standard form with A>1 and (r,). Let the embedding T:E — F be given by Te,
= yn—zun t,.fi- where (e,) and (f,) are coordinate bases in E resp. F and (N,) is a
sequence of pairwise disjoint, finite subsets of |N.
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We use the notation of Lemma 2.5. By the fundamental inequality we obtain
sup, o, /ty=B; <+ o0 for each k, hence

A/ AP =01, o, < B < A

for some v, hence z,,<p+v, if r,<n=r,.,. Again invoking the fundamental
inequality we obtain for m=n:

o, /o =D,

qkn/ 9k +2,m=

hence A"/ A%k+2m—qy <D,< APk for some B, It follows that

qkn/aqk +2,m=-
(6) Zin =P+ Zk s 2m MZn.

By part i of Lemma 2.5,V p 3 n, M, such that Max {k: z,,=z,,}=M,<+ 00
V n=n, Hence inductively we can find k, n; such that

(7) Zen<Zkyn< o - o <Zipn V nznj,

By part ii) of Lemma 2.5. we find some k, and n” with g, ,=2n ¥V nzn". Find k,
and nj, by (7). Fix k=Max {ko, ks} no=Max {n”, n, 4n,}. Then for n=n, we have
dkn g n,

(8) zk1n<zk2n<zk3n<zk4n§zkn'

Let P={n: qu—n<r,}, S,=cardinality of {m: m=n and =gy}

Claim: 3 p such that 5r,/4=r,,, for p=po.

We shall prove the claim in the two cases:

Case 1: n=ny,, neP.
Suppose 4 (n—S,)<r,. Then 4(S,—n)>4n—r,—4n,>2n>0 so there are at least
S,—n, indices m which satisfy n=m=n, and ¢, =gy, that is, since by (7)
Qym<...<qpym=qim=qkn and gy, 's are distinct (since they belong to disjoint sets
N,) this means 4(S,—n")<q,,<n-+r, We obtain the contradiction 4n<r,+ 48,
Srp+n+r,+ 4n), <4n and hence we conclude that 4n—S,)=r,. That is, there are
at least [r,/4] indices m which satisfy m=<n and gy, <gym- Due to the block basic
embedding, all of these g, s are distinct, hence there exists some m; <n such that
[rp/4]1+ qin<dim,- Then we obtain:

5r,/4<n+7 /A= Qun+1,/4<dim, 15T, 41+ LS7,  sntb+2

érp+vk+2+ﬂk+2=rp+ul
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where (8) and (6) are used and u;=v;,,+fr+2.
Case 2: n=n,, n¢P.
In this case g,,—n>r, and we obtain: 2r,<r,+@u—N=r; +1=Tpiv+1=Tp+u,
where p,=v,+1.
Hence combining the two results we obtain dr,<r,,, for p=p, (Where r,
2no>r, —; holds) where p=max {m1, M2}, d=5/4. The claim is thus proved.
For p=p, we have: 2r,<d*r,<d%,.,< ... <rp.,4, Define f,=(4*) if
q,<n=q,,, where q,=r4,o—1)+1, P=Po- Then 2g9,<q,., for p=p, so B is stable
by Lemma 1.4.
It remains to show that a~ g: With g,<n=gq,,, we obtain: a,,/B,,éaqu/ﬂ,,

=1 and B,,/a,,__<__ﬁ,,/oqu=A““. Hence we conclude that o is stable.

Remark 2.8. We note that the converse of Proposition 2.7. also holds (cf.
Corollary 2.4.4 pp. 63 [4]). Hence embeddability of A, («) into A, (o) through a
block basic embedding characterizes o as a stable exponent sequence. Concerning
the general embedding of A, () into A; (®), Proposition 2.6. states that a is
necessarily weakly stable. We shall show that the converse is not true. To
construct a counter example we shall first derive a necessary condition.

Proposition 2.9. If A, () is isomorphic to a subspace of A, () then a.~ B which
satisfies either lim, B,.,/p,>1 or lim, B, ,/B,=1.

Proof: We use the notation of Lemma 2.5. Choose [, and k, satisfying s,;‘ <1
and py 41— Py = —2. Then —j, g, m, I. We have:

l = ' tmq | ajq/bkom = (l tmq I alq/bkom) (ajq/aeq) é (blm/bkom) (ajq/alq) é (Cl + l.m/
ckom) (ajq/alq) =expl(p+1— pko)am +(s _11 —s; 1)“;,]-

Since (y,) is a basic sequence in A, () there exists a system (|- ;) of norms on A, («)
equivalent to the usual norm (| - ||;) so that (y,) is a basic sequence in each [A, (),
|“1]* (cf. [1]). Hence there exist C, k, j with C™' || [y, < |-k =C |- || Let v be
such that  p;,,—piy+(s5¥'1 =) YA*<—1. Suppose rp,<q=rg+, and
Foy <MZT, ... Then: if ¢ <m’: take I=I, and we have

I <exp [(P10+1 "Pko)“m'*‘(s_zlo

_sj_ l) aq]
<exp(—2a,+a)<exp(—a,)

if ¢>m+v: take I=j+1 then
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I1=exp[(pj+2—Pig) tm+ (5j3'1 —s; D] Sexp(—ay)

since a,=AY>A" """ =a,A4".
Hence if r, ,,<q=<r, +1+, does not hold then I=<exp(—a,). Define

Zm=Z Y | tney fOT Ty <M STy Then
|ym—2m|kSC2 > sup Itmqlajq<+oo_
m Iym Ik m ‘;1>§,:::,':11_‘:_'v N Ym “ko

Hence for some mg, (Z,)m=-, is @ basic sequence in (A, (o), I-I,‘)A (cf. Lemma 3.4. pp.
69 [4]) hence in particular linearly independent. We have

{zm: rm’<m§rm'+l}csp{em: rm’+1<m§-rm’+l+v}v
hence for any s,
{zm: rm'<m§rm'+s+l}csp{em: rm’+1<m§rm’+s+v+l}'

Hence for mz=m, an_d any S, Fpise1—Tm=Tm+s+v+1 =" m+1 OF I'ms1 = Im
SPmistve1—Tmsss+1- Without loss of generality assume the inequality is valid for
all m. Recalling that «,=A7 for r,<ns=r,, . define  B,=4"" for
qp<n§.q‘)+l where qp=rvp+1' B

Then if g,=n=qp,+, W have oc,,/ﬂ,,éoqu+ 1/A"’= AY and B,,/a,,§A"”/aqp— 1. Hence
a~f and

v

An+1—dm=Tvm+1)+1 " Fvm+1 =.Z vmt 14— Tym+d)

i=
'§1 (Pym+i+s;+ve1—Pomsits;+ )

for any s;=0. Choosing in particular s;=(t+ 1), —i for any fixed ¢t >0 and writing
Am =q9dm+1—Y9m W€ have

A,=

I M <

(Pom+t+2)+1 = Tyemr+ 1)+ D=V Apiiir-
1

We conclude that for any n=m we have A, =<vA,. It follows that either
sup, A,< +oo or lim, A,= + co. Suppose sup, A, =M< + o0 and let B=A".
Then define y,=pB, B" %% for q,<n=<q,.,. Then 7y,.,/y,=p"*r for
4,<n=q,.,. Hence im y,,,/y,=B"»>1. On the other hand, y~ p follows by:

1=y,/B,=B"" %% <B.

Hence a~ fi~7y. To complete the proof suppose lim, A,= + co. Define y,

=BP(1+"—Zﬁ(B—1)) for g,<n=<g,.,. Then if g,<n<n+1=q,,:
14

B=—1 B—1
<

+ < +1
A,+(n—q,)(B—1)= A,

Yn+1/7n=1
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if n=gq,

B—1
X

yn+1/yn=1+
14

Hence 1<y, ,/7n=1+(B—1)/A, for q,<n<gq,., so lim, y,,/y,=1. We also
have

1Zy./B, =1+ 2 (B—1)=A4

14

Therefore o~ p~7y.

Example 2.10. In this example we construct a weakly stable exponent
sequence o for which A () is not isomorphic to a subspace of A, (). Define « in a
standard form where 4> 1, r, =0 and for p>1: r,,, =m+r, if p=m(m+1)/2 for
some m=1 and r,,,=1+r, otherwise. We shall check that the conclusion of
Proposition 2.9 cannot hold. Suppose a~f, say C™'<q,/8,<C Vn.

i) Assume lim S, ,/B,>1: Take p=m(m+ 1)/2 and hence r,,, =r,+m. Find
my, M >1 such that if m=my, the B,,,/B,=M for all r,<n=r,,, p of above
form. Then we obtain the contradiction that for mz=m,:

Mm_l éﬂrp+m/ﬁrp+l écz arp+m/arp+l =C2'

Hence o #p.

ii) Assume lim B, ,/B,=1: Take p=m(m+1)/2+1 and hence r,,,=m+r,
Choose n, such that 8, ,/B,< A'? for n=n,. Then if n>r,=n, where p has the
above form, we obtain the contradiction that:

A’"=a,p+m/a,p+l =arp+m/arp+l =cC? ﬁrp+m/ﬁrp+l £C* A1,

Hence we concluded o % . Finally it follows by Proposition 2.9 that A, («) is
not isomorphic to any subspace of A, ().
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ERRATA
Page Line Instcad of Plcase, read
7 1 from bottom ViagmOF (U, 1)= ViagmOF (U, 1)=0
20 10 from top BC, <A%~*"! é)'l‘0,1+so—s/)',konj BC, <A™}
= Vg win,~ S/a.,w s Vern 0™ ,/rzwj
<B ﬁ"h(}* u-,—s/a"n,.n, gr’l,na |.nj"/aﬂnu,-
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