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Introduction

Let D be an open and connected subset of C™ and let # be a complex,
separable, finite or infinite dimensional Hilbert space. For any positive integer n, let
Gr. (n,# ) denote the Grassmann manifold associated with n and#i.e., th e set ofall
n-dimensional subspaces of #. In the main part of this paper we shall consider the
class A, (D) of all Gr (n,5#)-valued analytic functions defined on D.

Two functions f and fin A4, (D) are called congruent, if there exists a unitary
operator on # which moves each subspace f(z), onto f(z), for all points z in D.

We follow Griffiths(cf, [6])in saying that the functions f and fhave order of
contact k, where k is a positive integer, if they agree in an osculation sense up to order
k. Two congruent functions have order of contact k for any k. .

A more or less expected converse of this remark is contained in the congruence
theorem (cf., [2, 8]), which asserts that, under a non-degeneracy condition, two
functions in A, (D) are congruent, if and only if they have order of contact n.

This theorem originates from the already mentioned work of P. Griff iths
[6]. In the stated above form, the congruence theorem was proved, in the case m=1,
by M. Cowen and R. Douglas [2].

The general case was discussed in [8]. Although the methods used in [8] are
essentially different from that of [2], just as in [2] the proof given in [8] has the
inherent defect to be an indirect one. More precisely, the congruence theorem was
obtained as a consequence of a rather deep understanding of the local equivalence of
Hermitian holomorphic vector bundles of rank n over D. The trouble with such an
approach is that many qualitative simple properties of analytic functions into a
Grassmann manifold are inevitably not used explicitly.

The aim of the present paper is to give a new and simpler proof of the
congruence theorem. The proof uses certain operator theoretic techniques devel-
oped in [1]. In fact, the main results of the paper, Theorem 2.4 and Theorem 3.7,
could be regarded as essentialy strengthened version of Theorem A and Theorem B
from [1], respectively.

Significant examples of functions in 4, (D) arise, in the case where s#is infinite
dimensional, in connection with the class B, (D) introduced by M. Cowenand R.
Douglas (cf, [2, 3, 4]). The elements of this class are m-tuples of commuting
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operators on s#, and to any m-tuple Tin B, (D) there corresponds in an obvious
fashion a function f; from D into Gr (n,5#). Using a result proved by R. Curtoand
N. Salinas (cf, [5, Theorem 2.2]) one obtains that f; is an analytic function.
Moreover, two m-tuples from B, (D) are simultaneously unitarily equivalent if and
only if their associated functions are congruent.

This last remark constitutes a good reason for the study of congruent functions
in the class A, (D).

We now give a brief outline of this paper. Section 1 contains some preliminaries
on smooth and analytic functions from D into Gr (n, ). In Section 2 we associate to
any function fin A4, (D) and any set & of bounded linear operators on 5, a chain of
fields of finite dimensional C*-algebras over D. The local structure of such an object
is presented in Theorem 2.4. The discussion of congruent functions in A4, (D) is
carried out in Section 3. The main result of this section, Theorem 3.7, is a
consequence of Theorem 2.4, and the congruence theorem appears as a particular
case. Finally, in Section 4 we digress in order to relate the results of Section 3 to the
Cowen-Douglas class B, (D).

1. Analytic functions into a Grassmann manifold

Throughout the paper D will denote an open and connected subset of C™ and
## will be a complex separable, finite or infinite dimensional Hilbert space. Given a
ptg;}tive integer n, we shall denote by Gr (n, 5¢) the set of all n-dimensional subspaces
of # .
1.1. If Xis a subset of #, let span A deno'e the closed subspace of
s generated by .

Assume that fis a function from D into Gr (n,5#) and let D, be an open subset
of D. A collection {h,: 1 <o =n} of #-valued functions on D, will be referred to as a
frame for f over D, if (1.1.1) f(z)=span {h,(z): 1 Sa=n; ze Dy}.

The frame is called smooth, respectively analytic, if all functions h,, 1 Sa <n, are
smooth, respectively analytic, on D,

Definition. A function f: D— Gr (n, 5#) is said to be smooth, respectively analytic,
if for any z, in D there exist an open neighborhood D, of z, and a smooth, respectively
an analytic, frame for f over D,. The set of all analytic functions from D into Gr (n, 5#)
will be denoted by A, (D).

1.2 Let Z (o) be the C*-algebra of all bounded linear operators on # and let

& (D, & (#)) be the space of all smooth functions from D into £ (). With
pointwise sum, product and involution, the space & (D, #(s#)) becomes a unital
involutive algebra. Identifying each operator in % (#) with a constant function on
D, one obtains a natural inclusion of & (#)into & (D, & (s#)). The unit of &£ (#)
will be denoted by 1.

For o a closed subspace of ##, let [#"] denote the selfadjoint projection in
() with the range . Given a Gr (n, 5#)-valued function fon D we denote by [ {]
the function defined as follow: [ ] : D—>2(3#), [f] (z2)=[f(z)]); ze D. It is clear that f
is smooth if and only if [f] is a self-adjoint projection in & (D, Z (#)).

1.3. In order to state the next result we introduce the notations

(1.3.1) 0,=0/0z;, 0;=0/0z; 1=Zism..

Proposition. Let f: D—Gr (n, #) be a smooth function and let us put p=[f]. The
following conditions are equivalent:
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(i) f is analytic;

(i) 1—p) Jp=0; 1<ism.

Proof Assume thatfis analytic and let z, be a pointin D. Let {h,: 1 Sa <n} be
an analytic frame for fover an open neighborhood D, of z,. From (1.1.1) one obtains
that there exists a smooth frame {g,: 1 <a=<n} for f over D, such that

(13.2) p@h= I <h h,()) gz} z€ Do, he 2.

where {») denotes the inner product on 5. In fact the functions g,, 1 S« <n, are real-
analytic, hence p is real-analytic, too. From (1.3.2) we have

@p) @h= = Ch h@) @:9) @ 1sism,

hence
(1.3.3) @,p) 1—p)=0; 1=<is=m.

Since (0;p)* = d,p, the conditions (ii) and (1.3.3) are equivalent.

Assume now f'is smooth and p satisfies the condition (ii). Let z, be a point in D
and let {h,: 1 Sa=n} be a smooth frame for f over an open neighborhood D, of z,.
Then we have

(1.3.4) Oih,=0;(p hy)=(0p) h,+p Oih,; 1=<i=m.

Since J,p,=pd;p, we obtain that J;h,(z) belongs to f(z) for all z in D,. It
follows that .

(1.3.5) Jho= X &yhy; 1=5i<, 1=a=n,

where {£i;:1<i<m, 1=a, B=<n} is a collection of complex-valued smooth
functions on D,,
Using (1.3.5), we find

(136) 3, 0h=% (3 &+ £ & & Dhy 1<ijsm, 1Sasn.
=1 y=1

Let us define the nxn matrix &=(&,5) of (0,1)-forms on D,, as follows &,4

=3, & dz; 1=Za, B<n. Theexterior derivatived acting onsmooth formscan
be decomposed to obtain d=9+3; d=X0, d,dz;, 0=, 0dzZ,. Since 0,0;= 0.0,
a simple computation shows that, using a matrix notation, from (1.3.6) we have
0—E(AE=0

Now, by the well-known generalization of Grothendiek’s Theorem proved by
B. Malgrange (cf, [7]), it folows that, eventually decreasing D,, there exists an

n x n matrix n=(n,s) of complex-valued smooth functions on D,, such that
(1.3.7) on+nAé=0,

1(z) is an invertible matrix: ze D,. This implies that the collection {k,: 1 <a=Zn}
defined by
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(1.3.8) ky:Do—>H, ky= Z 1,5 hg; 1Sa=n,
=1

is a smooth frame for fover D,. From (1.3.8), (1.3.5) and (1.3.7) we have successively

M=

a-ier= X (a-l naﬂ)hﬂ'i' 2 ’1-17 ah7= (a-l "aﬁ+ Z nuy éiyﬂ)hﬂ=0
p=1 y=1 =1 y=1

for all 1<i<m and 1 <a<n. Thus, {k,:1<a=<n} is a n analytic frame, hence f'is

analytic. :
1.4. Our next task is to give some consequences of Proposition 1.3. Let (Z*)™ be
the set of all m-tuples I=(iy, . . . , i,) of nonnegative integers. We shall use the

following standard notations: D; =(d,)'1. .. (8,)'m, D;=(0,)'1... (0™ | I|=iy+ ...
+1i,,. For any A in & (D, ¥ (:/)) we have

(1.4.1) (D; D, Ay*=D,D,A% I, Je(Z*)"
IfI=(0, ..., 0), then we put D;A=D;A=A.

Proposition. Iet p=[ f] be the self-adjoint projection in 8 (D.< (#)) associated
with a function f in the class A, (D). Then we have

(1.4.2) (Dp)p=0, Dp=p(D,p); |I|21,
(1.4.3) p(Dp)=0, D,p=(D,p)p; |Il21,
(1.4.4) D151P=(D!P) (5JP)—(EJP) (Dyp); I=|J]|=1.

Proof. For the first relation in (1.4.2) we shall proceed by induction. If | I | =1,
then we obtain D;p=D(p*)=(D;p)p+p(D,p). By proposition 1.3 we have p(D,p)
=D,p, thus (D;p)p=0. For |I|=2 put I=J+K with J, K in (Z*)" and |J|=1.
Assume that (Dgp)p=0. Since (D,;p)p=0, it follows

0=(D, (Dxp)p))p=(D,p)p +(Dxp) (D;p)p=(D,p)p.

For the second relation in (1.4.2) we proceed by induction, too. If | I|=1, then
we already know that D;p=p D,p. For | I | 2 we put I =J + K as above and assume
that Dgp=pDgp. Since (D;p)p=0 we have

D,p=D,(pDxp)=(D,p) (Dxp)+pD:p=pD,p,
and the proof of (1.4.2) is complete.

The relations (1.4.3) are obtained from (1.4.2) using (1.4.1). Finally, if I and J are
such that | I|=|J|=1, then using D,p=p(D,p) and p (D,;p) =0, we have succesively
DD ,p=D,(pD,p)=(D,p) (D,;p)+ p(D;D,;p)=(D;p) (D;p)+ D, (pDp)— (D,p) (D;p)
=(D;p) (D;p)—(D,p) (D;p).

1.5. From (1.4.2) and (1.4.3) we obtain that (D,p) (D,p)=0=(D,p) (D ,P);
[T], |J|=1. Then, by a repeated use of (1.4.4), clearly we have
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Lemma. For any I and J the derivative D;D,p can be expressed as a sum of
monomials of the following two types

@) +(Dy, p) Dy, p) - .- (Dr,p) (Dy,p)
(i) £(Dy,p) Dy, p)... (D, p)(Dy,p)
where k>1and I, + ... +1,=1, J,+ ... +J,=J.

1.6. For the rest of this section we assume that fis a function in 4,(D) and
p=[f]. We know that p is real-analytic. Define

(1.6.1) &(N)=span {p(z)h; ze D, he #}.

This subspace of # will be referred to as the essential space of f. For any z, in D we
also introduce

(1.6.2) 8 (f; zo)=span {D;p(zo)h; Ie(Z*)", he }.

Lemma. 8 (f; zo)= & (f) holds.

Proof. Consider the projections Eo=[ &(f; zo)] and E=[ &8 (f)].We clearly
have E,=EE and also E,D;p(zo)=D;p(z,) ;1 €(Z*)™. Since D,p=pD,p one finds
EoD;p(z0)=D,p(z0); J€(Z*)", and by Lemma 1.5. we obtain

EoD;D;p(zo)= DD,p(z0); I1,Je(Z .

Since the function p is real-analytic, we conclude that there exists an open
subset D, of D such that Eqp(z)=p(z); ze€D,.

Now, the real-analytic function D 3 z—(1 —E,)p(z) % (#) vanishes on D,,
hence it vanishes identically on D, that is Eop(z)=p(z); ze D. Thus E,E =E, hence
E,=E. :

2. The main technical result

Throughout this section let p denote the self-adjoint projection in & (D, £ ())
associated with a function f in A4,(D) and & be a fixed subset of Z (),
containing the identity operator 1.

2.1. For any nonnegative integer k, consider the following two self-adjoint
subsets of & (D, & (:#)):

@*={(D,p) Y*X(D1p):0=|1|, |J|Sk; X, Ye &)

Tk={(D,p) Y* X (D;p):0=|I|, J|Sk+1; |I|+|J|S2k+1; X, Ye x}.
Givenapointzin Dwe put ¢*(2)={S(2):Se¢*}; 1*@)={T(2):Te 1*}; 0> (2)
=Urz0 #*(2), and let #*(z); #*(z) and o © (z) denote the C*-algebras generated in
L(#) by ¢*(z), t*(z) and @ ©(z), respectively. By Proposition 1.4 one observes
that all these C*-algebras are finite dimensional and have the common unit p(z).
Finally, for any open subset D, of D let us introduce the following involutive
subalgebras of & (Do, & (3#)):

[ (Do, o *)={A€ g (Do, £ (#)): A(z)est *(2), z€ Dy},

4. Mathematica Balkanica, 1, 1987
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(Do, 8)={A€ & (Do, & (#)): A(z)€ B*(2), z€ Dy},
I'(Dy, )= {AG & (Do, 2(H)): A(2)eL * (2), ZEDO}.

Obviously we have T' (Do, %) =T (Do, ) =T (Do, ** ) =T (Do, ™).

The next two results are direct consequences of Proposition 1.4 and Lemma 1.5.
The proofs are simple, therefore we shall omit them.

2.2. Lemma. For any A in I"(Po,d") and |I|=|J|=1 we have
p(D,A) €T(Dy, B%); (D, A)pe T(Dy, &*); p(D;D;A)pe T(D o™ ). _ :

2.3. Lemma. Iet D, and k be such that p (D;A) belongs to ' (Do, of*) for any A in
I'(Dy, &%) and |1|=1.
Then T (Do, *)=T (Do, #®).

Now we are ready to state the main technical result of the paper.

2.4. Theorem. There exist an open nonempty subset D, of D and an integer
1 £k <n, with the properties:

(i) T (Do) o#")=T (Do, &), _
(i) if@:T (Do, &*)— & (Do, £ (#))is a morphism of complex algebras which

satisfies _ _
(24.1) @ (p(D;D;A)p) = (p) (DD, (A)) ¢ (p)
for all A in T(Dy, & * 1) and O0Z|I|, |J|S1, then
(2.4.1) @(p(DD;A)p) = @(p)D;D;p(A) @(p)

for all A inT(Do, &*)and all I, J in (Z™)™.
2.5. This theorem is a strengthened version of Theorem A from [1]. At the present
moment, using the results of Section 1, its proof is more or less similar with the proof
of Theorem A given in [1]. However, for the reader’s convenience, we prefer to
include in what follows a complete proof.

We begin with a well-known result (see for instance [2], Lemma 3.4 and [9]).

2.6. Lemma. Let A be a self-adjoint element of 8(D, % (5#)) such that A=pAp.
Then there exist: ’

(i) an open nonempty subset D, of D;

(ii) a collection {p,:1<a=<l} of self-adjoint orthogonal projection in
Dy, % (#); _

(i) a collection {u,:1<a=<l} of real-valued smooth functions on Do, with
Ua(2) # 1y (2), z€ Dy, a# B, related as follows:

] ]

p(2)= Elpa(z); zeDy, A(2)= 21 U (2) pl2); zED,.

Moreover, from the preceding relations one obtains

P.(2)= ﬂg (A (2) — pp (2) Pp(2))/(1a(2) — 1p(2)) ; Z € Do.

2.7. Now we return to the finite dimensional C*-algebras o *(z), #%(z)
and o *(z) associated with p and & . Given a finite dimensional C*-algebra # we
denote by d(s#) the cardinal of any maximal set of mutually orthogonal self-adjoint
minimal projections in &/, and let us put
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(2.7.1) di=d(sf *(2)); dP=d( & *(2)).
Of course we have
(2.7.2) d?<dl!< ... =d< ... Zd*<n

therefore we can find an open nonempty subset D, of D and an integer 1 <k <nsuch
that

(2.7.3) d“1=d*; zeD,.

Moreover, using some well-known facts about the structure of finite
dimensional C*-algebras (see for instance [10, Chap. I, § 11]), by a repeated use of
Lemma 2.6. and eventually decreasing D,, we may suppose in what follows that
there exist:

(i) a sequence d,, ..., d, of positive integers;

(i) asystem Q,,..., Q, of mutually orthogonal self-adjoint central projections.
in T (Do, ¥ 1); .

(iii) a collection p}:1=<i<I, 1=<o=d; of mutually orthogonal self-adjoint
projections in I' (Do, of *71);

(iv) acollection Uiy:1<i<l,1<a,f<d, ofelements of ' (D,, % ¥~ 1), such that

(2.7.4) di+ ... +d,=d*"'; zeD,

(2.7.5) p.=0.

1

Uia = pi' U:;ﬂ = U;.iav ziz[i U;a = Aﬂy id)

I M

where A,z, means the Kronecker symbol.

Clearly, by (2.7.5) we obtain that all Q,, 1 <i</, are central projections in
(Do, o ¥ 1).By(2.7.4)and (2.7.3) we conclude that all pi(z), 1<i<Il, 1=a=<d, are
minimal projections in & {; ' and also in & {;), for any z in D,. Now, given I in (Z*)™
with |I|=1 and 1<i<I, we know from Lemma 2.2 that p(D,;Q;)is in I' (Do, # ¥ 1)
and since Q; is a central projection in I'(Dy, # *~') we have p(D,0,)=pD(Q,Q))
=p(D,0:)Q;+ QiD,Q;)=204(D,Q,)Q; whence in follows p(D;Q,) =0=(D,;Q)p.

From this last relation it is easy to check that Q,p(D,D,;B)p=p(D,D,B)pQ;;
1<i<lforall BinT'(Dy,# *"')and 0<|I|+|J|=<1.In particular one obtains that
Q., 1 <i<|, are central projections in I' (Dy, & ¥).

Now, since the projections p(z), 1 £i</,1 S« <d,, are minimal in & {, for any z
in Dy, by (2.7.6) and the preceding remark we have that, for any AinI" (D, o ¥), there
exists a uniquely determined collection of complex-valued smooth functions on D,
{rip(A):1=i<l, 1=a, f=d,;} such that

1 d. . )
(2.7.6) A=X 3 iy (4) Ui,
i=1 apf=1

2.8. Let Dy and k be as above and let ¢:T'(Dy, & ©)— & (Do &' (# )) be a
morphism of complex algebras. In order to prove Theorem 2.4, it sufficies to
show that

(2.8.1) pD, Uiy eT (Do, o),
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(2.8.2) @ (p(D; Uy p)=(p) (D19 (Usp)) @(p),
(2.8.3) o(p(D,;U%p) p)=0(p) (D19 (Uzp)e(p),

forall |[I|=1,1=<i<l, 1=, =d,
Indeed, (i) of Theorem 2.4 will be a consequence of (2.8.1), (2.7.6) and Lemma
2.3, and (ii) will follow from (2.8.2), (2.8.3) and (2.7.6).
Our next task is to prove (2.8.1), (2.8.2) and (2.8.3). Consider the subsets of
' (Do, #* ') defined by
&,={p.A(DxD.B)Cpj:1 =0, B=d,

A, B, CeT (Do, o *™ 1), 0Z|K|+| LS 1Sis]}

If z is a point in D, then each U, (2) is a finite product of elements belonging to
&, evalued in z. Therefore, eventually decreasing D,, we may suppose that any Ul,
is a finite product of U’; ’s belonging to &,. Thus we are allowed to prove (2.8.1),
(2.8.2) and (2.8.3) assuming that U}, is an element of ¢
Let us first assume that Uty =pi, A (Dg B) Cpj where A, B, C arein T"(D,, A
and |[K|[=1.
Given I in (Z*)™ with |I|=1, we derive easily that

(2.8.4) p(D; Uk, (D; UippeT(Do, #5),
and using (2.4.1), we also find .

(2.8.5) @(p(D; Uipp)=o(p) (D19(Ugp)) @(p).

(2.8.6) @(p(D; Uipp)=@(p) (D19(Usp) ¢(p).

The rest of the proof will be based on the following simple result.

Lemma. Let o be an involutive algebra and let ¥, Wing/ be given such that
V W V =V, Then for each derivation é ons/ we have

(2.8.7) - SV=V(6F)+3(E)V—V(EW) V.

where F=WVand E=VW.

Proof of Lemma. Since EV=V we obtain V(6F)+6(E) V=V(W)V
+ VW(SV)+ 8 (E) V= V(W) V+ E(8V)+ S (E) V=V(6W) V+ V. Now let us put in
(2.8.7) 6=D,, V=U}, W=U}. Clearly E=p}; F=pj and we find

(2.8.8) D, Uiﬂ = Uip (Dlpjs) +(D,pb) Uip = Uia (D, Uala;) Uf,,,.

Since p(D,pl)eT (Do, &%), from (2.8.8) and (2.8.4) it follows that p(D, Uiy
eI (D,. #*). On the other hand, if we putin(2.8.7)6=D,;and V=1¢ (Ulp), W=0(Uy)
then E = ¢ (p}), F=¢ (pj) and we obtain

(2.8.9) D, (Uip) =0 (Ukp) (D1 (pp) + ¢ (Dp)e (U ap)

— (Ui (D (UR)) @ (Ukp).
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Using (2.8.5), (2.8.8) and (24.1), from (2.8.9) it follows ¢(p(D 1ULp)DP)
=)D 19(U'2p))e(p).

Thus (2.8.1), (2.8.2) and (2.8.3) are proved.
For the second case, when U, = pi A (D, B)Cpj;, we proceed analogously. The proof
of Theorem 2.4 is complete.

3. The congruence theorem

Let fand fbe two functions in the class 4, (D). Denote by p and p the self-adjoint
projections in & (D, £ (#)) associated with f and f, respectively.

3.1. Definition (cf. [6, 2]). The functions f and f are called congruent, if there exists
a unitary operator U in & () such that Up(z)=p(z) U; zeD.

3.2. Definition (cf., [6, 2]. Let k be a nonnegative integer. The functions f and f are
said to have order of contact k, if for any point z in D there exist:

(i) an open neighborhood D of z;

(ii) two analytic frames {h,:1<a=<n} and {h,:1<a=<n} for f, respectively 7,
over D; ~

(iii()) a unitary operator U, in & (#), such that U,D; h,(z)=D;h,(z);
Ie(Z*)Y", OLZ|I|Zk; 1Za<n.

It is not difficult to see that we have:

3.3. Lemma. The functions f and f have order of contact k, if and only if for any
point z in D there exists a unitary operator U, in % (s#) such that

(3.3.1) UzDip(z)=D,p(z) U.; 1e(Z¥)", 0<|I|=k

As a consequence, if f and f are congruent then they have order of contact k
for any k.
3.4. Before continuing we make another remark. Let U, be as above and

consider V,=U_p(z). From (3.3.1) one obtains V,* V.=p(2), V.,V,=p(z); hence V,
is a partial isometry in % (). Moreover, from (3.3.1) one finds V,D,p(z) D;p(z) Vi
=D,p(2)D;p(2); I, Je(Z*)", O=Z|I|, JIsk

3.5. The congruence theorem. Iet f f be two functions in A, (D) such that
(3.5.1) 8(N=&(N=#

The following conditions are equivalent:

(i) f and f are congruent;

(i) f and f have order of contact n;

(iii) for any z in D there exists a partial isometry V, in¥(#) so that
ViV.=p(z), V.Vi=p(2), V.D,p(z)D ;p(z) Vi=D,p(z)D ;p(z); O=|I|, |J|=n.

3.6. Clearly we have to prove only that (iii) implies (1). This will follow from
the next theorem, which is a generalisation of Theorem B from [1]. In order to
state it we need some notation. Let f and f be as above and let & be a subset of
() containing the identity operator 1. Assume that the condition (3.5.1) is
satisfied and consider a map Y: Z—£(2#) such that y(1)=1.
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3.6. Theorem. The following conditions are equivalent:

(i) ¥ is the restriction of a inner automorphism in & () induced by a unitary
operator U, which satisfies Up(z)U*=p(z), zeD;

(i) for any z in D there exists a partial isometry V, in & (#) so that

(3.6.1) ViV.=pz); V.V:=p(2),

(3.62)  V.D,p(z)Y*XD ;p(z) Vi =D,p(Y/*W(X)D;p(2).
for all X, Y, in & and OZ|I|, |J|=n.

Proof. It is clear that (i) implies (ii). The converse is based on Theorem 2.4.
We associate with f and & the open nonempty subset D, of D and the integer
1 <k<n which appear in Theorem 2.4. Given A in I'(Dy.ez ™), let us define
@ (A)z)=V ,A(2)V %; zeD,. Since I'(D,, o/ ) = [(Dy,.s), from (3.6.1) and (3.6.2) we
obtain that ¢ is a well-defined morphism of complex algebras from I (D,, o )
into & (Do, & (#)), and the conditions (2.4.1) in Theorem 2.4 are satisfied. Thus,
from Theorem 2.4 we conclude by induction that

(3.6.3)  V.Dp(2)Y*XDyp(2)V =D b (2Y(Y)*Y(X)Dp(2),

for all z in Dy, X and Y in& , I and J in (Z")"

Let z, be a fixed point in D,. Since /€ Z, Lemma 1.6 and the assumption
(3.5.1) give

#=span {XD;p(zo)h: X eX, 1€(Z*Y", he #}=span {Y(X)Dp(zo)h;
(3.6.4) Xex, Ie(Z*)", he#}.

Let U in £ (#) be defined by the equations U (XD;p(zo)h)=y (X)D;p (zo)VZOh;
Xe &, 127", het . .

From (3.6.3) and (3.6.4) we derive that U is a unitary operator on# and also
Y(X)=UXU* XeZ.

(3.6.5) D;p(z0)=UDp(z)U* 1e(Z™)"

Since p and p are real-analytic, using (3.6.5) and the remarks given at 1.5 we
conclude that p(z)=Up(z)U* zeD. The proof is complete.

4. The Cowen-Douglas class B, (D)

Denote as above by D an open and connected subset of‘ C™ and by
#a separable, infinite dimensional, complex Hilbert space. Given m-tuple

T=(T,. ..,T,) of commuting bounded linear operators on 2, and a point z
=(Zys = = = z,,) in D, we define
A (T, zy={he#: (z;—T))h= . .. =(z,,— T, )h=0}.

4.1. Definition (cf,, [2, 3]). The m-tuple T is said to be in the class B, (D), where
n is a positive integer, if and only if
(i) dim " (T; z)=n; zeD,
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(ii) span U,e,,.x’(T z)= .

(ii) range (z;—T) =, l<t<m. zeD.

4.2. Let T=(T,, ..., T,) be in B, (D) and denote by f; the function defined as
follows: fT:D—»Gr(n,.#), fT (z)=A(T; z). Arguing as in [3] or using a result
of R. Curto and N. Salinas (cf, [4], Theorem 2.2]), one obtains that f; is
analytic. Moreover, we have as a direct consequence of the definitions:

Lemma. Let T=(T,, . T,) and T=(T,, . .., T,) be two m-tuples in the class
B, (D). The following conditions are equivalent:

(i) there exists a unitary operator U on # such that UT,=T,U; 1<i<m;

(ii) the functions f; and f7 are congruent.

4.3. We now wish to obtain an operator theoretic interpretation of the order
of contact of the functions f; and f7. Before stating precisely what we are able to
find out, we shall give some preliminary results.

Let T=(T,, ..., T,) be a fixed m- tuples in B, (D) and let p=[f;]. For any:z
=(z4, . . ., 2z, in D we have
43.1) (z;— T)p()=0; 1=j<m.

Let I =(iy,...i,) bein(Z*)"and fix 1 <j<m. If i;= 1, then, differentiating the
equation (4.3. l) one obtains

4.32) (@=T)Dp(2)=—i; D;(p(@), 1G()=Cy - - - =1 . . ., in).
If i;=0, then one finds
(4.3.3) (zj—T)D,p(z)=0
Given I=(ij, ..., )andJ (67 Jm) i (ZN)", put I—J=(iy—jy, -, im
= Jm)- If I1—J belongs to (Z*)y™ we write I >J We shall use also the notation
Ib' —lillow' for z -—(zl ..... z,) in D, let T’ (z) denote the operator in & () defined
y
(4.3.49) T (2)=(z; — TyYt. . . (zm— T,,)m.
By arepeated use of (4.3.2) and (4.3.3) we have:
(4.3.5) T’ (2)D;p (2) =(—= 1) (NI —=N")D;_,p(2); I—-Je(Z")",
(43.6) T/ (z) D;p(2)=0; I—J¢(Z*)™

Let z be a fixed point in D, and {h,: 1 <a<n} be an analytic frame for f; over
an open neighborhood D, of z. For any nonnegative integer k, let us introduce

(4.3.7) EM(T; z)=span {Dh,(2):0=|I|<k, 1=<a=<n}.
We easily derive

(4.3.8) & M(T; z)=span {D;p(2)h:0=|1|<k, he #}.
From (4.3.5) and (4.3.6) one sees that
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(4.3.9) T’ (2)Dh,(z)=+(I/I—J")D;_;h,(2); 1Sa=n, I-Je(Z*)",
(4.3.10) T’ (z) D;h,(2)=0; 1=a=n, I—-J¢Z*)

These equations, together with span U,z & ¥ (T 2)= & (fy; z)=Himply
that:

Lemma. (i) The vectors {D;h,(z):1€(Z*)", 1=a=n} are independent in #,
and span {D,hagz): Ie(Z*)", 1<asn}=2#.

(i) dim & O(T z)=1+m+ ... mn. ,

4.4. Now we introduce another collection of subspaces: # ® (T} z)={he H#:
T (z)h=0, |I|=k+1}. Obviously # (T} z)=x(T} z)=&E (T 2).

Lemma. For any nonnegative integer k we have 5" ®(T; z)=& ®(T; z).

Proof. By (4.3.9) and (4.3.10) one finds that & ® (T; z)c A ® (T z). Let h be
in 4 ®(T; z). By Lemma 4.3, there exists a unique collection of complex numbers
{c;o:1€(Z*)", 1<a=n} such that h=X%X,, ¢;, D;h,(2)

Let J in (Z¥)" with |J|=k+1. Since T”(z)h=0, one obtains

0= X Z +C; (I'V/(I—=I))D;_h,(2).
I>J «a
By Lemma 4.3 again, we have ¢; ,=0; I=J, 1<a=<n. Since J is an arbitrary
element in (Z*)™ with | J|=k+ 1, we conclude ¢; ,=0; |I|=k+1, l=a=n, hence
h belongs to & ®O(T; z).
4.5. Let T=(T,, .. .T,) and T=(T,, . . ., T,,) be two m-tuples in B, (D). Our
next task is to give an alternate means of the order of contact. Explicitly, we have:

Proposition. The following conditions are equivalent:

(i) fr and fF have order of contact k;

(ii) for any z in D there exists a unitary operator U : 4 ® (T; 2)»A® (T; z)
so that .

(4.5.1) T\x® (T; 2=U, U\ A% (T; 2); 1<i=m.

Proof. Let p=[f,] and p=[f7]. Assume that f; and f have order of
contact k and let z be a fixed point in D. Then there exist two analytic frames
{hy;1=a<n} and {A,:1<a=n} for fr, respectively f7 over an open
neighborhood D, of z, and a unitary operator U. in & (#) so that:

(4.5.2) U.Dih, (2)=D; h, (2); O |I| =k, 1=sas=n
By Lemma 4.4 and using the equations (4.3.9), (4.3.10), it follows easily that
U, has the required properties. In order to prove the converse, let us assume that z

is a fixed point in D, and let U, be a unitary operator from ' ®(T; z)
onto ¥ (T; z), satisfying the condition (4.5.1). It is enough to show that

4.5.3) D,p(z)=U.D;p(z) Us; O<|I|<k.
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We shall proceed by induction. First we remark that 0=(z;— 7});7(2) =
Uz~ T)U ipz). hence (z,—T) Uipz) U,=0, 1=j=n.

Since dim range U p(z) U,=n=dim range p(z) we conclude that U;p(z) U,
=p(z). Thus (4.5.3) is proved for |I|=0. »

Assume now that (4.5.3) holds for all | I| </, and let I =(i, . . ., i,,) be such that
|[I|=1+1=<k. Let 1<j<m with i;=1. By (4.3.2) one finds U,(z;—T) U;D;p(2)
=(z j—7}) D,p(z)= —i ;Dy;P(z). From the induction assumption one obtains
(z;—T) UIDp(z)U.= —i;Dy; p(z) whence

4.5.4) (z;—T) (U:Dip (2) U.—D;p(2))=0.

By (4.3.3) the equation (4.5.4) is also true if i;=0. Therefore, U.D;p(z)U,
—Dyp(z) =p(2) (U.Dip(z)U.—D,p(z)). But p(z2)U.=U.p(z) and p(z)D;p(z)=0
=p(z)D;p(z) (cf, Proposition 1.4), hence U,D,p(z)U,=p(z).

The proof is complete.

4.6. We are now ready to state the main result of this section. It could be
regarded as a generalisation of Theorem 1.6 from [2] (see also [1], Theorem C).

Let T=(T,, ... T,) and T=(T,, ..., T,) be two m-tuples in B, (D). We denote
by T' the commutant of {Tj, . . ., T,,} and assume that & is a subset of T’
containing the identity operator 1 and all operators T, . . ., T,.

Let y:%—> <% (&) be a map such that

(4.6.1) y()=1, WT)=T; 1<jsm,
4.6.2) : Y(X)eT; Xe x
Then we have:

Theorem. The following conditions are equivalent:

(i) ¥ is the restriction to % of an inner automorphism in & (),

(i) for any z in D there exists a unitary operator U_:X ™ (T; z2)—»A#" (T z) so
that

(4.6.3) Y(X) AT, 2)=UXU | (T, 2); Xex.

Proof. It-sufficies to prove that, under our assumptions, the present
condition (ii) implies the condition (ii) in Theorem 3.6.

Let p=[f;] and p=[f5]. From Proposition 4.5. we obtain

(4.6.4) U.D,p(z) U,=D,;p(2); zeD, O0=Z|I|=Zn.

~ Now let us put V,=U,p(z). By (4.6.3) and (4.6.4) we derive easily the desired
relations (3.6.1) and (3.6.2). This concludes the proof.
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