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We consider semidiscrete variant of the lumped mass modification of the standard Galerkin
method for parabolic and eigenvalue problems using linear simplicial or bilinear quadrangular
elements and prove the corresponding error estimates.

1. Introduction

The diagonalization of the mass matrix (lumped mass matrix) is often an
advantageous practical step in the finite element method. This approach was
applied for eigenvalue problems by P. Tong, T.H. Pianand L. Bucciarelli
[27], where one of the terms was interpreted as resulting from replacing the
piecewise linear functions by certain piecewise constant functions. This
interpretation was adopted by T. Ushijima [28, 29] and M. Tabata [24] for
the case of uniform triangulation. During the last 10 years various types of
problems concerning the lumped mass technique have been discussed for second
order elliptic eigenvalue problems ([4, 12, 14]), for elasticity theory problems
([13, 18, 19]), semidiscrete and fully discrete versions of the lumped mass
modification for linear and nonlinear parabolic equations [25, 26, 7, 20, 6, 10].

In this paper we give a simple technique for establishing rate of convergence
for second-order parabolic problems and second-order eigenvalue problems. We
establish error estimate of type superconvergence of the gradient for second order
parabolic problems.

2. Preliminaries

Let Q be a bounded domain in R", n=2, 3 with a polygonal boundary Q.
We denote by (.,.) the scalar product in L*(Q). For positive integer m let H™(Q)
denote the Sobolev space provided with the norm [1]

10 lma=(Z 1012 0). where [vlpa=( = IDiliza)"
s=0 o

|xl=m
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and H)={veH'(Q): v|:n=0}. .
We introduce the bilinear form a: H' x H' - R!

S v)=j i du Ov
Q

a;;— ——dx,
ij=1 ’6x,- 6xj

where the matrix {a;;} j=1 . is symmetric and positive definite. Then, a(u, u) is
H} — elliptic.

By P(k) we denote the set of polynomials of degree k and by Q (k)
— polynomials of degree k of every variable xi,..., X,

We construct a l-strongly regular partition K of Q of simplicial and

quadrangular finite elements with diameters at most h.

With this partition we associate a space S, of functions such that: i) S, is
finite dimensional subspace of H) (Q)nC°(Q); ii) the restriction of veS, over every
finite element ecK is linear or polylinear function, i. e., veP (1) or veQ(l).

For computing the integrals over the finite elements we will use the
quadrature formula )

1 ntt
e v(w) for  simplexes
I, (v)=meas (e)
2
15 )
n ‘_‘::1 v(wy) tor quadrangles,

where w; are the vertices of the finite element.

Note that this quadrature formula is exact for polynomials of P (1) and Q (1)
for simplexes and quadrangles, respectively.

We may define an approximation of the inner product and the norm in

L*(Q) by

(1) (w, oh= = L), luly=(, T

3. Parabolic problem

We consider the weak formulation of the following Cauchy boundary value

problem in a polygonal domain Q, [I1, 25]: find a function u(x, t) H}(SQ)
x C'[0, T, satisfying the integral identity

5
) (%,v)+a(u, v)=(f,v) for every veHy(Q). te (0, T)

1'4(x, 0)=ug(x), xeQ.

Let us appLy the standart semidiscrete Galerkin method for the problem (2):
find u,(x.0=2, o;(1) @;(x), xeQ, te(0, T), where {@;(x)};., .~ 1S @ canonical
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basis in S,, which satisfies the integral identity (du,/dt, v)+ a(u,, v)=(/, v), for every
veS,, te(0, T), u,(x, 0) — given. This will give us the following Cauchy problem for
the system of ODE:

(3) Mo (t)+ Ka(t)=F(t), t=0, o(0)— given,

where a=(a,,..., ay), M={(p;, ¢;)} is the mass matrix, K={a(p;, ¢;)} is the
stiffness matrix and F=((f, ¢,),...,(/, ®x)- We shall discuss the lumped mass "
modification of this method [3, 7, 10, 20, 26). A simple way to define it is to replace
the matrix M in (3) by diagonal matrix M obtained by taking for its diagonal

elements the numbers Z_, (¢;, @)
4) Mo (t)+ K .a(t)=F () t=0.

This procedure may also be interpreted as resulting from evaluating the first
term in (2) by numerical quadrature (1).

We find that for the considered partition and quadrature formula, (4) is
equivalent to the following problem: find u,(x, t)eS, for te(0, T) and satisfying the
identity

du,,

(5) (W u)h-}—a(uh, v)=(f,v), for every veS,

N
uy(x, 0)= .El ug (x;) @; (x),

where (.,.), is defined by (1).

Recall that the maximum principles hold for (5) [22].

The use of numerical integration in the finite element method for solving
parabolic equations has been investigated by P. Raviart in [22], where
L*(H'(Q)) and L™ (L*(Q)) error estimates are obtained. Error estimates in. mean
square and maximum norms for discrete solutions are discussed by V. Thomee
[26]. The method of lumped masses also is used in combination with different
discretization in time by M. El Hatri [I0] and C. M. Chen and
V. Thjomee[7]. All these error estimates are of optimal order in h and require
only that the partition is quasiuniform [9].

Our intent here is to produce error estimates of superconvergence type for
the lumped mass approximation, similar to the corresponding elliptic and
parabolic error estimates from [2, 3, 15, 17, 21].

These estimates are strongly connected with the discrete seminorms which
are introduced below.

First, we introduce the seminorm

T

2 2

() [l wlli = max (w, W);.+£IWIf.ndIEHWHLw w@yt I wllLz @t @y -
0stsT .

Next seminorm is connected with the points of superconvergence of the
derivatives of the approximate finite element solution.
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Define

(7) Mwllh=( = |w]i2)"2

ee K

where for the different types of finite elements the seminorm |w|] , is defined as
follows:
i) for a polylinear quadrangle eeK with center x.

|w|}..=(meas(e))'*|grad w(x?)l;

ii) for a linear simplex eeK let G, be the set of the midpoints of the edges of e and

6 - .
for xeG, let vf(") be the derivative along the edge passing by x
|w|.={meas(e) T (M)z}n/z.
xe G, 61x

In order to prove the superconvergence result we have to suppose that the
finite element partition has additional regularity, namely it is quasiuniform (see [5,
15, 17]). For the 2D case this means that every two adjacent finite elements form
almost parallelogram [5, 17].

Now we shall formulate the main result concerning semidiscrete lumped mass
finite element approximation of the parabolic problem (5).

Theorem 1. Let the partition K be 1-strongly regular and quasiuniform and- the
solution of the problem (5) be sufficiently smooth. Then, the following error estimates
are true

®) [l —w, Il = O(h?)
where ||| . |||} is defined by (7).

Proof. Let us introduce the finite eclement interpolate u,eS, of function
u(x)eC(Q) as follows: u,;(x)=ZN | u(x,)px), where {¢;} is the canonical basis of
S )

The estimate (9) is known as a maximum norm error estimate (see, for
instance, [7, 26]) and here we present another proof for it. It is an immediate
consequence of the estimate (8). We have only to use that [11, 25]

max [v|SC|1Inh| {v|, o for every veS,, and max|u—u;| < Ch? max|D%.
xe Q xee xee
lel<2

The proof of the estimate (8) could be completed in the following steps given
in separate lemmas.



Lumped Mass Finite Element Method... ; 89

Lemma 1. Under the conditions of Theorem 1 the following estimate holds
(10) |a(u—uy, U)|§Ch2““”1.n|v|1.n

for every veS, and te(0, T).

The proof of the estimate (10) is based on the technique developed for elliptic
problems by L. Oganesjanand L. Ruhovec [21] and M. Zlamal [30] (see
also [2, 5, 15]). Note that the most restrictive assumptions in the proof are
%uasiuniformity of the partition, therequirementthat it covers exactly the domain

and the high regularity of the solution u(x,t).

Lemma 2. Under the conditions of Theorem 1 the following estimate holds:

ou
(11) lup—ugllln < ChA(lull L2m3 @y + "a lL22@p)
where the seminorm ||| . ||, is defined by (6).
The following identity is used in the proof:
az,, aul

0
12 (G ohta, D=au—u, 0+ D—(F O

ot o

for every veS, where z,=u,—u,eS, the estimates (10) and [(w, v)—(w;, V)l
< Ch?||w|,.qalvli.q te(, T). The last inequality is a consequence of the Bramble-
Hilbert lemma and the fact that the quadrature formula involved in (1) is exact for
polynomial of P(1).

Putting v=2z, in (12) and using Hg-ellipticity of a(...), we get for te(0, T)

-0 ou
.EII zllF+Cllzyll} o= Ch*(llull3 o+ ”E"%.n)

from where (11) follows.
The last step involves the following simple lemma:

Lemma 3. The estimates hold
(13) 4 lu—u ll% < Ch? ||ull 23 @y
(14) olla<Clllvlll, for every veS,.

The proof of the Theorem 1 ends with the notion that follows immediately
from triangle ineéquality and estimates (11), (13), (14):

* * *
e — w115 = Mot — g, + ety — w15 = Wl — gl i+ Clllug — gl

du
S CR((llull 22+ I ‘é; IL2m2@p)-
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Remarks 1. The Theorem 1 is valis also when the integrals in a(u ,, v) and
(f, v) from (5) are evaluated using quadrature formula with positive coefficients
exact for polynomials at least from P(1).

2. For simplicial finite elements the estimate (8) can be used to produce
superconvergence error estimate at the nodes employing the averaging technique
from [16] and [15].

4. Elliptic eigenvalue problem

For the bilinear form defined in § 2 we set the following eigenvalue problem:
find ieR and ueHL(Q), such that the following identity is satisfied:

(15) a(u,v)=i(u,v) for every veH}(Q).

There is a countable set of eigenvalues /4, and eigenfunctions u, such that
0<i, i <... and |u ]l =(u, w)'*=1.

We set the following finite element approximation of problem (15): find u,eS,
and 4,eR, such that the integral identity

(16) a(u,, v)=i,(u, v), holds for every veS,,
where, (.,.), is defined by (1) and gives a lumped mass matrix.

Our goal is to produce error estimates for the lumped mass approximation
(16) of (15) similar to those obtained in [12, 23] without lumping. Here we
systematically use the technique from the parabolic case where quadrature formula
is employed. Similar results are given in [14, 27] using different approach.
Let P: u—PueS, be the Ritz projector [23] with the properties

(17) a(u—Pu,v)=0 for every veS,,
(18) lu—Pul, o< Ch* *|ull,q k=01, ue H3(Q).

We prove the following theorem:

Theorem 2. Let 4, be some eigenvalue of (16) and u,, be its eigenfunction, such
that ||u, |, = 1. If the corresponding eigenfunction u of (15) belongs to H}(Q)NHA(Q).
then

| A— Ayl £ C(A)h%.
Proof. It is easy to see that by (15)—(17) A=a(Pu, u,)/(u, u,) and
Ap=a(Pu, w,)/(Pu, u,),.
Therefore,
[(up, W]
Since (t},,, u)=(u,u)—(u—u, u)y=1—|lu—u,|. then the denominator in the

right hand side of (19) is bounded away from zero when h—0. if ||y —u,|| -0 when
h—0. This fact is proved in [4].

(19) A=A (1, ) — (P, ).
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The second term in (19) is estimated in the following way:
[, up)—(Pu,up)y| < |(u— Pu, uy)| +|(Pu, u,) — (Pu, uy),|.

The last term is connected with the error of the quadrature formula employed in
(1) and by the Bramble-Hilbert argument is estimated by

(20) | (Pu, u,)—(Pu,uy),| < C(A)h*.

For the first term it is enough to employ (18) and the equivalence of the Li(Q)-
norm and | .|, in S, i.e,

|(u—Pu, w)|<llu—Pull |uy| Cllu—Pull |uyll,=Cllu—Pul| SCh*|ull, q.

Submitting these estimates in (19) we prove the Theorem 2. .
Having proved the convergence of the eigenvalues, we will prove the
convergence of the corresponding eigenfunctions in norm H!(Q).

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then, |u—u,|, o
=<C(4).h, where u is an eigenfunction corresponding to the eigenvalue A.
Proof.

a(u—u,, u—u,)=a(u,u)—2a(u, u,)+a(u,, u,)=~2i+i,—2i(u,u,)
S|A— Al + Al (u, u) = 2(u, up) + (up, up) — (U, up) + Uy, )yl
S|A—Apl+Au—uyllo0+ Al(un up)— Uy up)l-

We estimate every member of the right-side of this inequality. From Theorem
2 we have: |A—4,|<C(A). h2.

For the second term we use the result of [14] (Theorem 4) or [4] (Theorem 1)
||u—“;.”o.néc()»)~ -h. s

For the last term similarly to (20) we get [(u, u,)—(u, )y =Cllu,ll, o
.h*<Ch?.

At the end it remains to use that a(.,.) is H}-elliptic.
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