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1. Introduction

In this paper, we shall study the existence and uniqueness of the periodic and
almost-periodic solutions of the operator equation

(1.1) E,+E,A+A*E+E_E=G

in the class of the monotone operators on a real Hilbert space H.

The main results are contained in Theorems 3.1 and 4.1 and they are followed
by applications to the Riccati equation (Remarks 3.1 and 4.1).

The existence and uniqueness of the solution of the Cauchy problem
associated to the equation (1.1) are proved in [1, 2], by considering the
Hamilton-Jacobi equation

(1.2) o, (t, x)+%|(p,(t, x)|2 +(Ax, ¢, (t,x))=g(t,x) ; xeD(A),te[0, T].

As we shall see later (Remark 3.2) there is a close relationship between Equations
(1.1) and (1.2).

2. Notations

The following spaces and mappings will be used :

1. — Let X, Y be two Banach spaces. For every R>0 denote by X the closed
ball {xeX ;|x|<R}. We shall denote by the same symbol || the norms in X, Y
and 1n the space L(X, Y? of linear continuous from X to Y.

By C*(Zy ; Y) we shall denote the space of all mappings E : Xz— Y which are
Fréchet differentiable up to order k on X, such that EY¥, j=0, 1,...,k are

continuouks and bounded on Z,.

By C,,,(Zr : Y) we shall denote the space of all EeC*(Zg ; Y) such that EW is
Lipschitz on X, i.e.
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EYW-EYON

lx—y' X#Y,
xy €Xp

(2.1) I E llx.r=sup {

The spaces C*(Zg;Y) and L,p(ER ;Y) are endowed with the norms :

(2'2) |E|c*(zk;y)= 2 IE'j,Ra
j=0
k
(23) Elctyeain= E |E|ix+IE i
A j=0
where
(24) |E|jx=sup {|E?(x)| ; xeZg}.

2. —If k is a natural number or zero, then C*(X,Y) is the space of all
mappings E : X - Y which are k-times Fréchet dlfferentlable and their restrictions
to every X, belong to C*(Z, ; Y). The space C,_,p (X ;Y) is defined as the set of all
EeC*(X ;Y) such that the restrictions of E at every I, belong to Ct,p(ZR 3 ¥}

3. — We shall denote by B([0,T]; C*(X ;Y)) the space of all continuous
mappings E :[0,T]x X—Y such that

(i) The mapping

[0, T]x XY, (t,x)>EQ(t,x)(zy,...,2) is

continuous j=1,...,k, z,,...,z;€X.
(i) We have

(2.5) sup{IE(t,.)l;r;t€[0, T]} < + o0 for j=0, 1,...,k, R>O0.

The space B([0, T] ; Cf_ip(X, Y)) is defined as the set of all EeB([0, T] ; C*(X, Y))
such that

(2.6) sup{|E(t,.)llx.r ; te[0, T]} < + o0, R>0.
In the same way we define the spaces :
B(R;C*(X ;Y)) and B(R; C{,(X ;Y)).

4. — If k=0 we shall simply write C(X ;Y), C;,(X ;Y) instead of C°(X ;Y)
and CL,p(X Y) respectively.
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3. Periodic solutions

We shall study the operator equation
E,+EA+A*E+E_E=G, te[0, T']

(3.1) E(0,x)=E(T,x)

— _— L
in the class of convex functions on a real Hilbert space H.
First we assume that :
a) H is a real Hilbert space with inner product (.,.) and norm |-|.
b) The linear operator — A is the infinitesimal generator of a C,-semigroup of
contractions e~ 4 on H, verifying the estimate :

(3-2) le”*|<e” with >0, V 0.

We shall denote by A* the adjoint of A and by Dgi) the domain of A.
We introduce the following convex cone of C(H ;H)

(3:3) IN={EeC(H ;H); E monotone and E(0)=0}.

For every EeIl we denote by 1 the identity operator in H and by
(34) E,=E(1+¢E)™ "' the Yosida approximation of E and notice that
(3.5 E,(x)=E ((1+¢E)"'x)(1+€E)(1+€E)"'x))~*

(By E' we shall denote the Fréchet derivative of the operator E.)
Let EeIl. Then for all £>0 and R>0 one has (see e.g. [1], p. 43):

(3.6) |E.lo.r =|Elo.r»
(3-7) |E.l1.r=I|El1 g if EeC! (H §H),
(3.8) IlE N =IEll1.r+elElsr if EGCiap(H s H).

Consider the approximating equation

(3.9) Ef(t,x)=e "t e 4" Eg(e " x)
t
4 [e e o= [¢=1 Fry G](s,e”*TV4x)ds ;
j :

te[0,T), xeH, ¢>0,

and assume that
1

{GGB([O, T]; CLip(H s H)),

(©) G(t,.)ell, v te[0, T].

For EOGCLP(H ;H)NII, the equation (3.9) has a unique solution
E*eB([0,T]; Clip(H ;H)) with E*(t,.)ell, ¥ te[0, T] (see e.g. [1], p. 43 and [2],
p. 274).
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Moreover, one has
E*(0,x)=E,(x) for all xeH.
We look for a T-periodic solution E* for equation (3.9) in B([0,T];

C..(H ;H)) with E*(t,.)eIL, ¥ te[0, T).
Lp(l'o thgl purpose(, c)eﬁne the operator I' :C(Zg;H) C(Zg;H)

(3-.10) T E,(x)=E*(T, x).
Hence
(3.11) E(T,x)=e" Tt e T4 Es(e” T x)

T
+Ie-(1'—s)/¢ e—(T—s)A‘[e—l E§+G](s,e"‘7"”"x)ds.
o

E*(T,x) defined by (3.11) belongs to C(Zg;H).
Since

lEz”E¢|o.n§|E_E lo.r
the operator I is contractant. Indeed, for all E,, E ,eC(Zg ;H) one has
ITEO—FEolo_R=|E‘(T)—E' (T)IO.R

T
Se T 1N Ey—E oo +1E(0)—E* (0)| o,pe™" [~ T~ ¢7! *9)s
(o]

14

-1 —T( 1+w)
e '+ we
= P B |Eo—E olo.r £pel Eo—E olo.r»

where 0<p,<1.
Applying the Banach fixed-point theorem it follows that for every £>0,

equation (3.9) has a unique T-periodic solution

E‘'€B([0,T]; Ci,(H;H))
E*(t, Jell, v tel0, T

which verifies E*(0,x)=E,(x) and hence

(3.9) Ef(t,x)=e""* e~ '4" E*(0,e”**x)

+ j' e e TN [ 1 EL 4 G](s,e” T4 x)ds.
(1]
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We shall show now that this solution is bounded in the norms :

[*lo.rs Il *llo.rs |*1l1.r and |+ |lsr V t€[0, T}
By (3.9') it follows via (3.2) and (3.6)

t
(3.12)  |E*(0)lo.r<IE*(0)lo.r-¢ ™" ' * ™+ sup |G (t)lo.r-fe ¢ V¢ * s
0sStsST Y
1 .
+s—1Iz—(t—s)(z-l+w)|E¢(s)|o.Rds, IE[O,T].
We set °
Pe(t)=|E*(?)lo,r- €' "
and (3.12) becomes

ex(z-l + w)

(3.13) P*()) | E*(0)lox + ~1 sup 1G()lon+e=" § P<(s)ds.

-1
& " +w 0sIST

Applying the Gronwall lemma, (3.13) yields

1
(3.14)  |E*(D)lo.r SIE*(0)lo.c- e~ +— sup |G (t)lo.x, tel0, T1.
0stsT

On the other hand, since E*(0,x)=E(T,x),xeH, by (3.14) it follows that :
1

(03]
(315) |E¢ (O)lo.R é-i_—e_a-)—f sup |G(t)|°'k.
0st=sT

Using (3.14) and (3.15) we deduce the estimate

(3.16) |E*(t)lo.r =C sup |G(t)lo.r> t€l0, T},
0stsT

2

where C=a)(l_—e_uﬁ:)'

Since
lE llo.g =l Ello.x

in the same way we may show that :

(3-17) IE*(t)llo.e=C sup |G (t)lo.r t€l0, T].

0sStsT

By (3.9') we have
(3.18) E&(t.x)=e"".e~'"A" E% (0, e~ *4x) e ~*4
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t
+ e T oI [T 1(EY) +G,](s,e” " T94x). e Tds.
(o]

By (3.18), using (3.2) and (3.7) it follows
(3.19) |E* ()1, S|E*(0)|y,p. €€ 2

t
+ sup |G(f)ly.r-[e ¢V 20 s
0sSIST Y

14
+&7 1 [em TV 20) | Ee(s)|, pds, te[0, T].
0

Using the same technics (based on the Gronwall lemma) as in the proof of (3.14), it
follows that

. 1
(3.20) |E¢(t)|1_R§IEz(O)h'R.e-zm’+2_ Sup IG(t)ll.R'
wogrsr
On the other hand, since E*(0,x)=E*(T,x), xeH, we obtain
12w
(321) lEe(O)ll-Rél—__—ﬁ——zT sup IG(t)h.R-
0<t=sT

By (3.20) and (3.21), it follows

(3.22) |E*(£),.x<C'. sup |G (f)ly.x» tel0, T],
0stsT
where
, 1
= T 2w(1—e” 227
Reverting to (3.18) and using (3.2) and (3.8), we get
(3:23) NE (&) l1.r S I E°(O) ||y, p- e """ 22

14
+ sup [G(t)ll,rfe ¢ E " 200 s
0SIST o

t
+e7 ! feT ¢TI 2O EX(s) ||y g + | E*(5)l1.r)ds, te[0,T].
V]
Using (3.22), this yields as above

(3.24) 1 E*(¢) 1. < Cg( sup IG()ll1.x+Ck sup |G (t)ly.r), tel0, T].

0<t<T 0=t=sT
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Now we define the mapping @ from B([0,T] ; C(H ; H))to B([0, T'] ; C(H ; H)), by
G i» E*®, where E*® is the T-periodic solution to

the approximating equation (3.9').
Using the estimate (3.16), we get

(3:25) D (G,) (1) —P(G,) (t)lo.r=1E5 () — E%(t)lo,r

<Cg. sup |G,()—G;(t)lo.r t€[0, T].
0sSIsST

On the other hand, we have (see e.g. [2], p.274)
(3:26) 6™ (B ()~ Eu ()~ Ex() E ()= { (B sx+(1 =)D E v (=)
—E'(x) E(x))ds, xeH,
V. (x)=(1+2E) 'x.
Using the estimates (3.16), (3.17), (3.22) and (3.24), (3.26) yields
(3-27) le™" (E* (1) — E2 (1)) — Ex ()) E* (1) o.x
S(ME* ()N 1.r-1E*(t)lo,r + I E*(t)l1,x - I E* () ll0.R)e< Ck -8, te[0, T].

where

Now coming back to equation (3.9) we observe that for each xeD(A), the
T-periodic solution E*(t,x) is differentiable on [0, T] and satisfies the equation

(328)  Ei+A*E*+Eid+¢ ' (E*—E)=G in [0, T]x D(A).
Using (3.27), we see that the equation (3.28) is equivalent to
Ei+ A*E*+ E2A+ EE°=G + R®,
where
IR*(t)lo.x =&CR, V €0, T,
Similarly we have
E}+A*EY+EYA+ELE'=G+R",
where
IRY(t)lo,r < VC%k, V t€[0, T].
Using (3.25), we get
|E*(t)— E"(t)lo.r S Cg-Cr(e+V); te[0, T]; &v>0

and therefore
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lim E*=E exists in B([0,T]; C(H ;H)).

-0

Definition 3.1. The function E is called a weak-T-periodic solution to
equation (3.1) if there exists a sequence
{E*}<B([0,T]; Cp,(H ; H)), with E*(1,.)eIl, V te[0, T}, such that for e—0
(i) E*—>E in B([0,T]; C(H ;H));
(i) E*eC'([0,T]; C(D(A);H)); E*0,x)=E*(T,x);
(iii) Ef+ A*E*+ ELA+ELE‘—G in B([0,T]; C(H;H));
(iv) {E*(t,). te[0,T), &>0} is bounded in Cy,,(H ;H).
Summarising, we have proved the following theorem

Theorem 3.1. Suppose that assumptions (a), (b) and (C}Ware satisfied. Then the
equation l$3.1) has a unique weak T-periodic solution E. Moreover, E€B([0, T];
Cui,(H ; H)) and for every xeD(A) the function E (t,x) is absolutely continuous on

[0,T). In addition, the map G—E*® is Lipschitz from B([0,T]; C(H ;H)) to
B([0,T]; C(H ;H)).

Remark 3.1. In the particular case in which G is a linear continuous
self-adjoint operator on H, equation (3.1) reduces to the Riccati equation

{P’ ())+P(t)A+ A*P(t)+ P?(t)=Q(¢),

3.29) P(0)=P(T).

In consequence, if
1
G(t, x)=5(2()% ),

where
Q2()=0%(). 020

and suppose that Q(+)x is continuous on [0, T'] for each xeH, then assumptions
(a), (b) and (c) are satisfied and Theorem 3.1 gives existence and uniqueness of a
weak T-periodic solution P to Riccati equation (3.29).

Remark 3.2. If the operators : E5 and G, are self-adjoint, then
e—lA‘ Ei(O,e""x)e_",
e—(r-—s)A' Gx (s’e—((—s)Ax)e—(K—s)A and
e CTI(EY) (s,e " T94x) e~ are self-adjoint.
This implies that the operator E% (E® is the solution to (3.9')) is self-adjoint and for

£¢—0 we obtain that E_ is self-adjoint.
Hence, for G=Vg and E=V¢, by using the relation

o(t,x)= (jl; (E (t, Ax), x)d2,
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we see ¢ verifies the Hamilton-Jacobi equation

1
?+5] o *+(Ax,0,)=g.

4. Almost-periodic solutions

We shall study here the existence and uniqueness of a weak almost-periodic
solution to operator equation

(4.1) E,+E A+ A*E+E.E=G, teR,

in the class of convex functions on a real Hilbert space H. Throughout this section
we shall assume that conditions (a), (b) are satisfied and we shall use the notations
of Section 3.

Consider the approximating equation

t
(42) E*(t,x)= [ e U e ¢ =1 EL4 G](s,e”“T94x)ds ;
teR, xeH, ¢>0,
where the function G satisfies the following conditions :

(4.3) GeB(R; Cy,(H;H));
(4.4) G(t,.)ell, VteR;
(4.5)  The function G :R—C(H ;H) is almost-periodic, i.e.

gsee e.g. [3]. p.122) it is strongly continuous with respect to t and satisfies the
ollowing property : for any >0, there exists L(¢)>0 such that in any interval
[a,a+ L]=R, one may find a number 7, in such a way that sup,s|G(t+7,)

_G(t)lo_R<£.
Define the operator I' : X —X ; where

X={EeC(R;C(Zg;H)); E almost-periodic ; E(t,.)eIl, V teR}

and
t .
(46) T(E(t,x))= [ e ¢ Mee ¢4 [~ E 4+ G](s,e” " 94x)ds.
X is a complete metric space with the metric :

d(E,E)=sup|E(t)—E (t)lo.r-

teR

The function e ¢ e (~94°["1E 4 G](s,e”“"94x) belongs to C([6,7];
C(Zg;H)) and hence the integral
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t
Ie-(l—s)/ze—(t—s)At [a—l E;&-G](s,e“"”"‘x)ds
0

is well defined. We have the estimate

Ie—(l-—s)/ze—(t—s)A‘ [8—1 Ee+ G](S)IO,R

Se ¢ 9C vor 4 =1 sup|E(s)lo.r+e TV ) sup |G (s)lo.rs
se R =R

and therefore the integral from the right hand of (4.6) is absolutely convergent and

t
| f e ¢ = (=94 [~ 1 E 4 G](s)dslo,r
=00
-1

€ 1
sup | E(s)lo.r + =i SuP 1G (s)lo,x-
s€ R

S—=3
€ T+ W q

(We recall that the almost-periodic functions are bounded over R) The right hand
of (4.6) is an almost-periodic function since it may be written as a sum of two
almost-periodic functions (in virtue of the almost-periodicity of E and G) and the
set of all almost-periodic functions is a linear space.
The strong continuity of the right hand of (463 results from the fact that any
almost-periodic function” is uniform continuous on the real line (see e.g.
[3], p. 124).
Since

|E,—E,lo.r<|E—E |o.r,
the operator I' is contractant. Indeed, for all E,E eX, one has

&

IT(E(6)) =T(E (t)lo.r = —Sup|E (©)—E ()lo.e=p,-sup|E(t)—E ()lo.x.

8_ + teR teR
where 0<p,<1. Hence
d(T(E), T(E))<p,.d(E.E).

Applying the Banach fixed-point theorem and the fact that the operator (1 +¢E)~*
who intervenes in the definition of E, is nonexpansive on H, it follows that for
every £¢>0, Equation (4.2) has a unique almost-periodic solution,

(H;H)), E(t,)ell, V teR.

1
Lip

EeB(R;C

Now, we shall show that this solution is bounded with respect to & in the
norms :|«lo.z Il*llo.r |*l1.x and [« |l;.r; Vt€ER.
By (4.2), it follows that

t
(4.7) IE*(t)lo.r <sup |G (t)lo.r - I e T +ag

teER — a0
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t
+e7! [ eTU¢TNETITOE(s)|o,rds, teR.

We set
Pc (t): | E® (t)lo‘R s e'(‘_ ')
and (4.7) becomes

ez(z -1+ w) _ t
(48) P® (t) =< m S':JS |G (l)lo‘R +e ! _500 PE (S)ds.
Applying the Gronwall lemma, (4.8) yields
1
(4.9) | E*(2)lo.r gasuplG(t)lo.R, teR.

te R

Since

IEcllo.r =l Ello.r

one shows, identically as in the proof of (4.9), that

1
(4.10) I E¢(¢)llo,r =—sup |G (t)llo.r tER.
[(0)]

te R

By (4.2) we have
t
@.11) Ei(t,x)= [ e ¢~ e=0=94% [z~ 1(E2)_+G,](s, e~ M4x)e” ¢ 94ds,
This yields

t
(4.12) |E“(t)l.e <sup|G(t)l1,r- | e “72¢ 7 +2s

teR — a
t
+e7 ! [ eTUTET 20 Ee(s)|) pds, teR.
— @

Using the same technics (based on the Gronwall lemma) with which we have
proved (4.9), it follows that

1
(4.13) IE'(I)Ix,Réi—-SUPIG(I)h_R, teR.
w e R
Coming back to (4.11) we get

t
(4.14) " El(t) ”1'R§SUP ” G(t) MI.R' I e—“_")(‘-l+2“’)ds

1€ R —
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t
+et [ emtToET IR 2O Ee(s) ||y g +e| EX(s)]y,r] ds, teR.
Using (4.13), this yields as above

1 1
(4.15) Il E*()]l1.x §Z(SUP 1G()ll1.r +ES:£ 'G(t)ll.k), teR.

te R
Now we define the mapping ® from B(R; C(H ;H)) to B(R;C(H ;H)), by

@
G — E°, where E° is the almost-periodic solution to

the approximating equation (4.2).
Using the estimate (4.9), we get

(4.16) |®(G,)(t) —®(G,)(t)lo.r =1 E5 (1) — E5(t)lo.r

1
=—sup|G,(t)—G,(t)lo.r t€R.

@ e R
On the other hand, we have

(@.17) 6 (E ()~ E, ()~ B+ () E()
_ i (E' (s +(1 — 5)y.(x)) E(v. (x)) — E' (x) E(x))ds, xeH,

where
ye(9)=(1+eE)"x.
Using estimates (4.9), (4.10), (4.13) and (4.15), (4.17) yields
(4.15) o~ (E* (0)— E£ (0) — E5 () E* () o.x
S(E ()l 1.r-1E*(O)lo.r + 1 E* (2)l1.r - | E*(t) llo,r)e = Cr&, teR.

Now coming back to the equation (4.2), we observe that, for each xeD(A), the
almost-periodic solution E‘?t, x) is differentiable on R and satisfies the equation

(4.19) Ei+ A®E*+ EXA+& ' (E*—EY)=G.
Using (4.18), we see that the equation (4.19) is equivalent to
E;+ A*E*+ EA+ESE*=G+R®,
where
[R*(t)lo.r=eCg, teR.

Similarly we have
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E'+A*E'+ELA+EE*=G+R’,
~where

. IR”(t)lo.r=vCp, teR.
Then by (4.16), we get
|E¢(‘)"Ev(t)|o,x=%(e+\') ; teR; &v>0

and therefore
lim E‘=E exists in B(R; C(H ;H)).
e—0
Definition 4.1. The almost-periodic function E :R—C(H ;H) is called a weak
solution to Equation (4.1), if there exists a sequence {E*}=B(R ; C:ip(H ;H))
with E®(t,.)eIl such that for ¢=0,
() E*>E in B(R; C(H ;H))
(i) E*eC!'(R; C(D(A);H)),E*:R—>C(H ;H) is almost-periodic.
Gii) Ei+A*E*+E.A+ELE*>G in B(R; C(H;H)).
(iv) {E*(t,.), teR, e>0} is bounded in C, (H ; H).
Summarising, we have proved the following theorem
Theorem 4.1. Suppose that assumptions (a), (b) and (4.3)-(4.5) are satisfied. Then
the equation (4.1) has a unique weak, almost-periodic solution E. Moreover, E€B(R ;
Cy,,(H ; H)) and for every xeD (A) the function E (t, x) is absolutely continuous on R.
In addition, the map G— E* is Lipschitz from B(R; C(H ; H)) to B(R; C(H ;H)).

Remark 4.1. In the particular case in which G is a linear continuous
self-adjoint operator on H, Equation (4.1) reduces to the Riccati equation

(4.20) P (t)+P(t)A+A*P()+ P> (t)=Q ().

In consequence, if

G(6.9)=5(Q()xx), where Q()=0" (3, 020, Q()x is

continuous on R for each xe H and Q is almost-periodic then the assumptions (a),
(l:) and (4.3)-&4.5) are satisfied and Theorem 4.1 gives the existence and uniqueness
of a weak almost-periodic solution P to the Riccati equation (4.20).
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