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1. The following result is due to E.J. Nanson:
“If a real sequence a=(a,, a,,..., az,+1) is convex, then

a,+as+ ... +azp+q ~ a,+a,+ ... +a,,
n+1 = n

0))

’

with equality if and only if a is an arithmetic progression.

One can find this result in [1, p. 205], where its proof is also given. This proof
is correct, but it appeared to the authors rather artificially constructed. That
incited them to try to find a different proof, which would be, without regard to the
length, essentially more natural. The form of the proof of Nanson’s inequality that
they — tending to this purpose — obtained, conducted them to a more general
result. Besides that general proposition and its corollaries this paper contains
several other results, related in a different way to Nanson’s inequality.

Before passing to our main results, we shall give some auxiliarly assertions.

Lema 1. If a function f(x) is convex (strictly convex) on the intervals [a, b] and
[b. c] (a<b<c), and £(b) <f'+ (), then this function is also convex (strictly convex) on
the interval [a, c].

Proof. By hypothesis, we have, with a<y, <b<y,=c,

yl (<) (<) y2
Hence we get for a<x,<x,<b<x;=c
JCe)=fCx) _ fO)—f(x5) _ f(x3)—S(b)
X, —X, (:) b—x, (:) x3—b
and further, using the fact that the second inequality implies

S(b)—f(x,) < S(x3)—f(x;)

b—x, ('<‘) X3—X,
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we obtain the inequality

f62)=f(x)) _ fe3)=f(x3)

Xy — X,y (;) X3— X,

()

If a<x,<b<x,<x3=c, we have
[x3)—f(x3) o fx2)—fb) _ f(B)—f(x,)
X3—X, (;) x,—b (;) b—x,
and further, since fhe second inequality implies

Sx3)=f(b)  f(x2)—=f(x,)
x,—b (;) X, — X,
we conclude that (2) holds in this case, too. Therefore (2) is valid for all x,, x,,

x5 €[a, c] such that x, <x, <xj, which means that the function f'is convex (strictly
convex) on [a, c].

Lemma 2. If a sequence a,(ne N) is convex, then the function f whose graph is
the polygonal line with corner points (n, a,)(neN) is also convex on [1, o).
Therefore, a convex sequence a,(n€eN) has the property

(r—q)a,+(q—r)a,
q r—p

a (1=p<gq<r)

A

with strict inequality for fixed p, q and r if and only if the sequence (a,) is not
arithmetic for p<n=<r.

Similar assertions concerning finite sequence are valid.

Proof. The supposition implies the convexity of the function f on each
interval [k, k+ 1] (ke N) and its property /" (k) <f"; (k) (ke N, k=2). Hence, using
Lemma 1 and applying mathematical induction, one can easily prove the
convexity of f on each interval [1, k](keN, k=2),and that obviously implies its
convexity on [1, + o0).

It follows from the established, that

(1=p<g<r).

a,=f(q)< (r—a)f(p)+(q—n)f(r) _(r—q)a,+(g—r)a,
r—p r—p
According to a known property of convex function, this inequality is equality if
and only if fis linear on [p, r], thatis if and only if (a,) is arithmetic for p<n<r.
It is clear that all we previously established is also valid, in a corresponding
form, in the case of a finite sequence.

Lemma 3. If a sequence (a,) is convex, then the sequences (az, 1), (a3,), and
generally all sequences (ap, - ,) with fixed me N and pel0,..., m—1}, are convex.
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Lemma 4. Let A and B be real, and « and [f — positive numbers. Then any of
the inequalities

Rll
IA

A A+B A+B B
o

< < X2 <2
(<) (<) a+ﬁ a+p (<)ﬁ

B
B’
implies remaining two of them, i.e. the inequality

A A+B<_B_

< atp (B

IIA

Lemma 3 follows immediately from Lemma 2. The assertion of Lemma 4 is

evident and well-known.
Let us remark that we have, according to Lemma 4, the following corollary of

Nanson’s inequality

n 2n+1 n
z Aok +1 x a, b asrk
k=0 > k=1 > k=1
n+1 ~2n+1~ n
holding for convex sequence (a,,..., d,,+1) (@ similar result is given in [S,

pp- 59-60]).
2. We pass to a result of a general kind.

Theorem 1. Let a=(a,,..., a,) be a convex sequence and let 1,={1,..., n}. Let
Sfurther I, J and M be nonempty subsets of I, the sets I and J being non-overlapping.
Let these three sets have cardinal numbers o, f and 7y, respectively, and let

u=2xi, v=2xi, w= X|.

ie I ieJ ieM
Then, under the conditions

u

4) —< I\(VmeM) g-
B B
the inequality
yv— Bw aw —yu
Y a=< . Y a.
©) ieMal— av—Pu g '+“”_ﬁ“ ied

holds. If besides (4) the condition

w u+v

(6) o=

is satisfied, then
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Za z a
7 M o ielu)
7 y T a+p

holds. If, in addition, M and I UJ are non-overlapping sets, the inequality

Za z a Z a
7’ ieM < ieluJuM < ielud
@) Yy ~a+B+y T a+p

is also true.
Each of the inequalities (5), (7) and (7') becomes an equallt y if and only if a is an
arithmetic progression on the set

S={min(JuJ), min(JuJ)+1,..., max(IuJ)}.

Without the supposition

@) VmeM):<msz,
a B
the conditions §< b and (6) do not imply the inequality (7).

B

Proof. For me M arbitrarily chosen, we can find nonnegative numbers
P and Q such that P+ Q>0 and

_ Pu+Qv |
"~ Pa+Qp’

(am —u)P =(v— pm)Q.

i.e.

This is satisfied for
P=v—fm, Q=am—u,
these numbers P and Q being, according to (4), nonnegaive and with positive sum.

Using Lemma 2 and Jensen’s inequality applied to the function f mentioned in
that Lemma, we obtain

PafE)+QBIG)  Paf(y TD+QBI(5 )
am =f(m) é = “f
Pa+Qp “Pat 0B
PEf()+QEf()
ie I ie J
Pa+Qp ’
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(v— Bm)A +(em —w)B
®) an s CEI R,

where A= X a;, B= Za,. It follows further from (8)

iel ieJ
1
Xa,= AZ (v—pm+B Z (am—u
me I av—ﬂu{ meM( ﬁ ) meM( )}
_yo—pBw W=y o
T owv—Pu’  aw—Pu

that is the inequality (5).
If the condition (6) is satisfied, then we have

yw—pw aw—yu y
aw—pu av—Pu  a+p

so that (5) becomes, I and J being non-overlapping sets,

Z a Z aq

ie M ie IuJ

M glelud
y T atB

i.e. (7). If, in addition, M n(ILJ)=(Q, this inequality implies (7’), according to
Lemma 4.

Further, one can easily see that if the sequence a is not an arithmetic
progression (linear sequence) on the set S, then any of the inequalities (8) is strict,
and so the inequality (7) is strict, too.

Finally, the last assertion is confirmed by the example of the sequence a,= n?
(n=1,...,8), with I={1, 3,4}, J={5, 6, 8}, M={2, 7}. In this case the condition
(6) is satisfied, but

Yo § >2eM,
a 3
and so (4') do not hold. Since.
¥ a;
Ea sayq2 o530  F % 451 159 53
—_— = = —, fely =< =,
y 2 2 o+ p 6 2.3 2
the inequality (7) is not satisfied.
This completes the proof of Theorem 1.
Corollary 1. Let a=(a,,..., a,) be a convex sequence. Then for me N and

2m=n—1 the inequalities
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n 1 m n
Ta<—(Za+ X a)

1=
1 2m- -, i=n—m+1

1 nm 1
X ag=-
n—2m ;_pi, n,;

hold. Both inequalities become equalities if and only if a is an arithmetic progression.
3. Using Theorem 1, we shall prove the following generalization of Nanson’s

inequality.

Theorem 2. Let the sequence a=(a,, a,,..., Gz,+1) be convex. Then for meN
and 2m=<n+1 the following inequality

l n+l—m n+1

D ) <—— X _
9) n—2m+2 sem a2k_..n+1 k=xa2k 1

holds, with equality if and only if a is an arithmetic progression.
Proof We start from the inequality defining a convex sequence

2a5k < Gzk—1+a2k+1-

Adding from k=m to k=n+1—m one gets

n+l—m n+l—m
2T apSaym-1+2 T axn-1+8n+1-m+1
k=m k=m+1
n—m+2
= 2% ay-1—(@2m-1+a2m-m+3)
k=m
n—m+2 2 n—-m+2
< 2 Gpy1——————= X ax-1,
== -1 TS it 2k—1
i.e.
n+1l-—m n_2m+2 n—m+2
10 Y aus———m X az-i.
( ) e 2k_.n_2m+3 e 2k—1

Here we use the inequality

1 n—m+2
T ax-1=

k=m

Azm-1 +aZ(u—m)+3

2

n—2m+3

which follows immediately from Theorem 1. It follows also from Theorem 1 (first
inequality (7’)) the inequality

1 n—m+2 1 n+1
11 e _ ~1-
(11) n—2m+3 Z axn l§n+l kflau 1

k=m

Combining (10) and (11) one gets (9). The statement concerning equality in (9) is
clear, taking into consideration the corresponding assertion of Theorem 1. This
completes the proof.
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Remark 1. Using the substitution q;=b;,, one gets from (9), with n=2
instead of n+1,

1 n—m l n
n—om+1 kfma2k+l 5; kflazk (meN, 2m=n),
and especially, for m=1,
1 n—1 l n
z <- s
n—1 k=lazk+1_.. - k=1a2k
or, according to Lemma 4,
1 n—1 1 2n 1 n
anS5— Zgqs=- Zaxn
n—1 4=y n—1,-, n o=

4. As it has been established in [1, pp 205-206, 3.2.27], Nanson’s inequality
with a,=x*"! becomes the inequality of J. M. Wilson

T4+ x2+x*+ ... +x2">n+1
x4+x34 ... +x T

(x>0).

Using Theorem 2 one can, clearly, obtain a generalization of Wilson’s inequality.
On the other hand, starting from Corollary 1 one can also deduce the results
given in [1, p. 198, 3.2.4] (or in [5, p.139, 2.3.1.4)]), in [3, p.142, 2.3.1.5] and in
[3, p. 144, 2.3.1.6].

The following statement generalizes many results of this kind.

Theorem 3. Let p and q be real numbers and let p>q.
1° If qg>0v(p>0>gAp+q<0), then

pta__1
(12) @I PHA gcax),
a*—a*  p—q
2° If (p>0>qAp+q>0)vp<O, then (12) with reverse inequality is valid.

Proof. As the substitutions a—1/a do not change the left side of (12), it
suffices to consider this inequality for a>1. For the function

fla)=aP*1—1— E—Z(a’—aq) (a>1)

we have
+
f@="" g (p—g)a®—pa~t+q) (a>1).
If we put
g(a)=(p—q)a®—pa®~*+q,
then

g'(@)=(p—q)pa® 1" '(a®—1).
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For p>q>0, we have g'(a)>0 (a>1) and consequently g(a)>g(1)=0. That
implies f"(@)>0 (a>1) and further f(a)>f(1)=0, and so (12) holds in this case. If
p>0>gq and p+g<0, we have g'(a)<0 and consequently g(a)<g(1)=0 (a>1),
which implies f(a)>0 (a>1) and further f(a)>f(1)=0 (a>1), so that (12) holds
again. For p>0>gq and p+gq>0 we have, as in the preceding case, g(a)<0 (a> 1),
which now implies f* (a) <0(a> 1) and hence f(a) <f(1)=0(a> 1) and so the reverse
inequality of (12) holds. Finally, under the conditions 0> p>gq we have g'(a)>0
(a>1) and so g(a)>g(1)=0 (a> 1), wherefrom it follows f’(a)<0 (a> 1), so that
fl@< (1)=0, i.e. the reverse inequality in (12) holds again. The proof is finished.

Remark 2. Besides the generalizations of Wilson’s inequality and other
‘mentioned results, Theorem 3 gives improvement of a result of D. Z. Djokovic¢
[3, pp 162-163, 2.3.2.8] (also see [l, p.276, 3.6.26]), and also improves the
inequality in [1, p.279, 3.6.31] (or in [3, 2.5.18]).

x?—x"“

Corollary 2. The function h(a)= , with fixed x> 1, is strictly increasing

for a>0.

First proof. Let us put in Theorem 3: a=x>1, p=u+v, g=u—v with
u>v>0. Then we get

x2—1 u
> e
v

u—v

xu+v__x
or

> —vx (x>1, u>v>0)

which was to be proved.
Second proof. As we have

x*_,sh@@lnx) X In*"*!x

(13) h(a)=x -‘a - 22 a* (a#0, x>0),

the function h with fixed x>1 increases strictly for a>0.

Remark 3. From Corollary 2 immediately follows the mentioned
improvement of 3.6.31 in [1, p.279]. On the other hand, it follows from (13) that,
with a fixed x> 1, the function h(a) strictly increases together with |a|. By using
this fact and writing preliminarily (12) in the form

ptq ptq

X 2 —x" 2z +
P-4 P-4 >p 1 O<x#1),
X 2 —x_ 2

one can simply prove in another way all assertions of Theorem 3.
Corollary 3. Let x>y>0. Then
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(14) A :}:Tj;s>rx:/}"_}>lnx—lny O<r<s);
(15) il “x ”./,y>./y m<r<n

lnx—lnny

for r=1/2 the inequality (15) reduces to the following result from [4]
i 4 1 3414 1/4.,3/4
lnx—lny>2(x yHE 4 x> /xy.
Proof. According to Corollary 2, we have

h( )>h( )> lim h(a)=2Inx,

a—~+0

wherefrom one deduces (14) using the substltutlon x—x/y. (15) is a simple
consequence of (14).

Remark 4. For y=1 and r=1 the second inequality (14) gives a Karamata’s
inequality [1, p. 272, 3.6.15]; more precisely, this Karamata’s result in the form of
a strict inequality. One really first obtains, directly, Karamata’s inequality for
x>1, and then, by substitution x—1/x, also for 0<x<1,

Remark 5. It follows from (13) that h'(a)> 0 (a> 0). Using this inequality we
can easily obtain the inequality 3.6.17 in [1, p.273]:
x—y x+y
Inx—Iny 2

O<y<x).
This result enables us to prolong the sequence (14) of inequalities by

2xX—y 2x—)

Inx— z z
nx—Iny > x+y'>sx‘+y"

O<y<x, O<r<s),

. . . tht
where the last inequality follows from the fact that the function e decreases

strictly for t>0.
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