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Numerical Solutions to the Gurtin-MacCamy Equation

T. Kostova*, M. Marcheva

Presented by V. Popov

A numerical method with rate of convergence O(At) is proposed to find an approximate solution of the
so-called von Foerster-Gurtin-MacCamy system which describes the dynamics of a population with
respect to its age-structure.

1. Introduction

In the last decades mathematical methods are coming strong in biology.
Ecology and more precisely — population theory is considered to be a classical
field of their application.

The first who applied mathematical equations to the theory of communities
is thought to be Malthus with his well-known law of exponential growth. The
modern successors of that simplest model are much finer and correct descriptions
of reality and provide problems which are rather complicated and of great interest
from mathematical point of view.

These peculiarities are also possessed by the model offered in 1974 by M. E.
Gurtin and R. C. MacCamy [1]. It describes the dynamics of a closed
population taking account of its age-structure. Moreover, the birth and death
moduli depend on the total population size P(t). The following equations
supplemented by the initial condition are usually referred to as von
Foerster-Gurtin-MacCamy system:

ou Ou o

a + i dla, !, u(a, t)da].u(a, )
(1.1) u(0, )= | bla, | u(a, t)da].u(a, t)da ,
) ) »

u(a, 0)=o(a)

where u(a, t) is the size of the population of age a at time t;

a(a) is the initial age distribution of the population;

b(a, P) is called the birth modulus (average number of offsprings, produced by
an individual of age a);

d(a, P) is called the death modulus (the death-rate at age a per unit
population of age a). :

The question of existence, uniqueness and stability of the solution of this
non-linear hyperbolic partial integro-differential equation was investigated by
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M. E. Gurtin and R. C. MacCamy [1]. Though the exact solution is not known,
almost no attempts have been made to find an approximate solution. In T. V.
Kostova [2] are offered some analytical approximations and a numerical
method to approximate the solution of a simpler case of the system (1.1). In the
present paper we consider a difference scheme method for finding a numerical
solution to the original system with some additional minimal restrictions which
are stated down in what follows. We show that the numerical approximations are
bounded and that the scheme is convergent with rate O(At).

2. Statement of the problem

We are concerned with the numerical solution of Gurtin-MacCamy
system (1.1). We should consider the problem in some preliminarily fixed finite
interval of time

@2.1) 0<!<T.

Let the following conditions be satisfied:
I. 1. d, a, b are nonnegative functions;
2. d, b are smooth;
3. ae C and it is compactly supported in the interval [0, S], i.e. a(a)=0 for
a¢l0, S];
4. B,..=supb(a, y)<oo;

a>0
y=0

5. The initial conditions are compatible.
II. The solution u(a, t) of (1.1) is twice continuously differentiable in the
considered rectangular:

2.2) R={(a 1):0<t<T, 0<a<A}.

It is easy to establish by integrating the equations (1.1) along the
characteristic lines a-t=const, that u(a, t), differs from zero only in the region

W={(a, t):0<t<T, a—t<S}

Let us denote: A=S+ T. For simplicity we shall consider the problem in the
rectangular RoW.

We intend to construct a numerical method to find an approximate solution
of the problem

A
g_z + a_u = —dla, ju(a, t)da). u(a, t)

(2.3) u(0, t)= f bla, j (a, t)da].u(a, t)da
o o

u(a, 0)=o(a), for (a, t)eR.
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3. Some properties of the solution
in the discrete case
Let us consider the uniform mesh
B  Qu={@, t); k=0,1,2,...,K 1=0,1,2,..., L),
where a,=k.At, t,=1.At, At is the step in both directions and
(K+1).At>A=K.At, (L+1).At>T=L .At.

Note that K=L (as A=T).
We denote w,;=u(k.At, |.AT). Having in mind that

Ouy U — U

Pa AL + O(At)

we can easily prove that

ou Ou U —Up— g FUp— g — U1 -
ou kot~ Uk—1,0FUk— g 1 — U1 1+O(At)

aatal,” At

Uk~ Uk—1,0-1
Y ve— + O(At).

We approximate the integral using the trapezoidal rule

A K-At
fua, t)da= [ u(a, t)da+O(At)=1I,u. ,+ O(At),
0 )
where
At K—1
(32) IA,u.',= -2—‘ {uO.l+uK.l+2 pX) u_,_,}.
i=1
Since
A A A
fu(a, t)da=([u(a, t,—,)+O(At)]da= [ u(a, t,_ )da+O(At)
0 ) 0

we can approximate the integral in the following manner:

(3.3) ' :‘1 u(a, t)da=Iu. |+ O(At).

o

Thus for each point of the mesh Q4 it is fulfilled:

uk.,=u,‘_1_,_l[1-—At.d(ak_l, IA,u..,_l)]+0(At2),
k=1,2,...,K; I=1,2,...., L
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(3:4) S ug =Inlb(., Inu. ;- 1).u ;- 1]+ O(At)
I=1,2,..., L
uo=ao,=a(k.At) k=0, 1,..., K.

Simultaneously we consider the difference scheme

Wi =Wg— -1 [1 =At.d(ag—, Iayw. ;-]
k=1,2,...,K; l=1,2,..., L
(3.5) wo,i=Ilb(., Igw. 1—1).w. 4],
1=1,2,..., L
Wio=0a, =a(k.At), k=0, 1,..., K.

It is very important to prove some boundedness properties of the solution of
system (3.5). This is done in the following

Theorem 1. Let At—0, L—»oo, K—oo, so that At.L<T<At.(L+1),
At . K<A<At.(K+1). Then there exist constants 6 and C such that
whenever At<J:

1. w; =0 for all k, I: k<K, ISL;

2. kaléc, kéK, léL
We shall prove first the following simple Lemma:

Lemma 1. Let for a fixed | and for all k=0, 1,..., K be satisfied
Wii—120. Then:

(3.6) WO.IéB 'IAtw-.l—l'

max

Proof. It follows from (3.5,) that

At
W0.1=7-{b(0. Iyw. 1—1).Wo,—1+b(K, IaW. 1—1) Wk

K-1
+2. % b(], IAIW-,I—I)'wj.l—l}
j=1
At K-1
é?'{Bmax'wo.l—l+anx'wK.l—l+2' z Bmax'wj.l—l}=Bmax'IAlw'.l-l'

ji=1

Proof of Theorem 1. We shall prove both statements of Theorem 1
jointly by induction on 1 and at each step simultaneously for all k=1, 2,..., K.
Let us denote

Xmax = Max o(a)
0<as=S§
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(37) qok_,=l—At.d(ak, IA,W._I).
Then (3.5,) appears as

(3-8) Wi i=Wk—1,0-1-@Pxk—1,1-1-
3 3
Let R =e2 *Bmax T. A. X max +(e2 " Bmax T 1)-amax
and
1
3.9 oy=——+— .
(3:9) ' 2 .maxd(a, y)
0<asA
0<y<R

Let At<d, and At<2. We denote
3 3 -, ;
Rjz(i‘At'Bmax+1)'1A‘W"j-l+Z'At .Bmax.amax, ]=2,..., L.

We consider the following statements:

S,(J) i wi ;20 Vk=01,..., K;
S,()  Iaw. ;SR
S3(J) : Wi j = Oax if k=j.
Let 2<I<L. We shall show that if S,(I—1), S;(I—1), S3(I—2), and S,(),

Jj=2,..., I—1 are true, then S,(l), S,(]), and S5(I) are also true.
First of all, the validity of S,(j), j=2,..., I—1 leads to the following chain of

inequalities :

3 3
IAtw-.l-—léRl—l é(i'At'Bmax + 1).R,_2+ Z 'Atz'Bmax'amax

3 3
S5 AL By +1).((5 - AL By + 1) IaW.1-3+ 3 A By )

[\S RV

3 -
+ %'Atz'Bmax'amaxé"’é(-z—‘At‘Bmax-'-l)l 2.1A‘W.'1

3 3 3
H(5- AL B + 1 73 1) 5 A By Oy =(5. AL By + 1) 72 Iyw.

(E.At.Bm,‘+l)'"2—l

2 3 3 3 =3

+ = AP By O S(5 AL B+ 1) T2 W,
3 2
§-At-3mx

+((% At.B, 1) —1) 0.,
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(3.10)

At K—1 At K—2
IAIW-.1=7-{W0,1 +wg 1 +2.Z w1 < 5 ABpax-IaW. 0+ Wg_10+2. T wjo}
j=1 i=0
At At
< > ABax- A - Ao +2.K.ocmax}§(? B +1). A,
3
S5 AL B +1). A

Then (3.10) gives I, w. ;- =<R.
1
Therefore ¢ ;- 6[5’ 1] and from (3.8) it follows that

W,‘J;O, Vk=l, 2,..., K,

3.11
(3.11) Wil SWe—10-1= oo SWe0<0p., for k=L

From (3.5) it follows:

WO,I=IAlb(" IAIW.J._I)gO.

Therefore S, (1) and S5 (1) are true. Now we shall use S, (/—1) and S;(I—2) to
prove the validity of S, () '

At Kt
IAlW-.l—2=7 AWou—2+wgi—2+2. Z w5}
ji=1
At .
S 2wt 4. 2wy}
2 j=2
At K—-1
é7.{amax+2.WK_[_1+2.W0_1_1+2.WK'1_1+4 . Z wj.l—l}
j=1

(3.12)

A
-

.3.amax +2~1Alw~.l—1-

Therefore
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At =1
Iaw. = > Awou+wka+2. T wy}
j=1
At K—-2
= 5 ABmax-IaW. 11 +Wg_1 ;-1 +2. = Wii-1}
ji=0
At
_S_7'{Bmax'IAlw'.l—l+w0.l—l}+IAlw-.l-l
At
é?-{Bmax-lmw-.l—l+Bmax-lmw-.l—2}+IAtw-,l—l
At 3
=< > ABpax-IaW. .11 +2.B o Iaw. -1 + 5 At By O b IaW.

3 3 -
é(i 'At'Bmax + 1)'1A1w-.l—l + Z 'Atz'Bmax'amax =RI<R

We have to check now the validity of S, (2), S5(1), S5(2), and S,(2).

First, note that

Inw. 0=A.a, <R

At K—1
IA‘W._1= 7.{Wo‘1 + Wk +2. X wj.l}
j=1
At K—-2
é —i— . {Bmax.IA,W.'o+WK_1_o+2 . .ZOWJ'_O}
ji=

lIA

At At
7 . {Bmax' A <O hax +2.K .am“} §(7 'Bmax + 1).A - O nax
3
é(f .At.B_ . +1).A.0,,, <R.
1
Therefore - <@y-,,-;=1 for s=1, 2. These inequalities directly imply

L OSwWi 1 =@r—1,0Wk-1,0S0p,,, k21,
wo,1 =1Iab(., Ipw. o). Ww. ¢20;
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2. 0SWi2=Wi-2,0-Pk-2,0- Pr—1,1 S Uppay, K22,
Wi2=Wq,1-90,120,
wo,2=1Iab(., Inw. 1).w. ;1 20.

Thus we proved that S,(2), S5(1), and S;(2) are true.

Second, it is obvious that S;(0) and S, (1) are also true. Further, proceeding
exactly as before (in the case of I, w. , [=3), we can easily verify that

Iyw. <R, (i.e. S,(2) is also true).

Thus we have proved that S, (j), S,(j), and S;(j) hold true for all j=3,..., L
when At <min (J,, 2)=4. Therefore, as is seen from the chain of inequalities (3.10)

IA,W._]'<R, j=3,..., L.

To conclude the proof of Theorem 1, we have to establish that w, ;, k <j are
bounded. Really

Wi i=@k—1,j-1---Poj-kSIaw. j-k-1 <R.
In view of this inequality and (3.11), we choose

C=max(R, a

max)

and the proof of Theorem 1 is completed.

4. Proof of the convergence of the method

Let us denote & ,=u,;—wi;, Vk=0,..., K; I=0,..., L.

Because of the boundedness of |u; ;| and |w,,| there exists a constant C,
(independent of k, I) such that

4.1) lexa| = C,.

We seek more rigorous estimate for |g,].

After subtracting the system (3.4) from the system (3.5) we consider the
equations for the error

E i =Up 1 — Wi 1 =Uk—1,1-1 —At.ug gy d@-y, Ipau. 1)

+OA) =Wy g -+ AL Wy d(@—y, Taw.,1—1)
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=101~ Aty -y d@x- 1, Tpu. ;—y)

+At.wk_1',_1.d(ak_,, IA,u.,,_1)+0(At2)
—At. Wiy [da- o Tgu. - )—d(a—y, Taw. —1)]

=g -1(1 —At.d(ay -, Ipu. ;1))

od(ay—,, y)

O R P
Y B §

Ape. - +O(AP).

Then
exa=¢tx—1,1-1[1—At.d(ax—y, Inu. ;-1)]

od(ax-+,y)

At?),
oy /y=éz-1+0( £

_At'wk—l"—l 'IAIE'.I—I .

where &,_;€([aw. -y V Ipu. ;—4). By (av b) we mean (min(a, b), max(a, b))
g —wo =1Ia[b(., Inu. —q) . u. ;=11 =Iafb(., Ipew. 1—1).w. - 1]+ O(Al)
=Ip0[b(., Ipu. 1—1) v = 1] —Iadb(., Tasut. 1—1).-w. 1—4]

+ 17 fb(., Tpu. ;—1).-W. =11 —Iadb(., Ipaw. —1).w. - 1]+ O(AL)
=In[b(., Tptu. 1—1). €11 ] FOA) +T7[(B(., Tpu. 1—1)—b(., IpW. 1-1)).-W. 4]

ob(., y)

=Indb(., Inti. 1—1). 6. .1- 1]+ O(AD) + 1A [ B (ysan Wil IaE -,
=M1-1

where nj_ €I gu. ;-1 V IgwW. 1—1). SO
eoa=Iadb(., Inu. 1-1).€. ;- 1]+ O(At)

ab(..y)
+1,, [ W] IaE -y
At[ ay /,V=?1;-1 N l] Ate- -1
The last difference appears as
8,"():0.

Thus we arrive at the following system for the error
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e i=6x—1,1-1 [1—At.d(ax_y, Inu. ;- 1)+ O(AL?)
od(ayx-1,y)
—At. w1 Ip 8 -y ——— .
k—1,0-1-1ar€. 1-1 2y Iy=¢&-,
(4.2) e00=1Iplb(., Incti. 1—1).&. 1— 1]+ O(A)
ob(.,
+IA’[M

W o) Iak. -
3y Jy=mi-1 W -1l Ik 11

8,‘_ =0.

Since this system is too complicated, and in the same time, our goal is to
restrict |g |, we shall use some inequalities to make (4.2) more concise.
Let us denote )

l/lk.l= 1 —-—Al . d(ak’ IAtuﬂvl)'

Since
A
{u(a, t)da=Izu. +O(A?)
o
and, on the other hand,
A
fu(a, t)da<M.A, where M= maxu(a, 1)
o 0<asA
0=t=T
then there exists a constant Const, such that
Ipu. ;=Const.
Thus if we require that At=< then

2. max d(a,y)

0<asA
0<y=<Const
1
(4.3) ) SYs1.
Beside that we denote
oda,.y)  _,
ay fy=¢ ™

Next we condude from the assumptions for d and the fact that I, w_, and I,u_, are
bounded, that
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l dd(a, y) 'g max 6u(a Y l =(denotation)=D
oy [y=¢ 0<a<A
0<y<max (Const . R
4.4)
=>|0kII<D Vk—l, 2y
’ =1, 2,..
ob(a,, ) ob(a, y)' :
— < max ———|=(denotation)=B.
‘ oy [y= 'lf 0<as<A oy
0<y<max (Const . R)

With this in mind we restrict |go|:

ob(., y)

W —q) IaclE. -
3y /y=th, a-1]-Iale. -1

[eo.ul STaclb(., Tau. ). le. -1 11+ O(AL) + I g [——

SBmu-.IAAg-.l—l|+B-IA1W-,I—1 .IA,IS._1_1|+O(AI)
<(Bp.. B.R).Inile..1— 1|+ OA)=E. Inle. 1|+ O(AL),

where E=B_, .+ B.R. Then the system (4.2) has the form

max

Ext=Ek—1,0-1-Wk—1,0-1—Dt Wy 11 1.0k 11—y . Ine. ;-1 +O(AL?)
(4.5) < leo | SE.Inle. -1+ O(AY)
81‘_0=0, k=1, 2,...,K l=1, 2,...,L.

Let us consider the equality (4.5,).
1. If 0,-,-, and I,¢€. -, are with opposnte signs then the inequalities (4.3),

(4.4) and (4.1) imply that
|8kl|> Jex—1.0-1]1+ O(AL).

2. If 04_y,-1 and Ipe.,—, are with one and the same sign then
(—At.wi_y,-1.0—1—1.1p8.,,—1) can be disregarded

|8k1|2 &k—1.1-11+O(A?).

In both cases we conclude that

lex—1,0-11=2. || + O(At).
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From this inequality it follows in the same way as it is done in (3.12) that
Inle. - 112 . Inle. 1|+ O(AD).

Having in mind this the inequality (4.4,) can be written also in the form

(4.4,)* |e0 | 2. E . Iz le. |+ O(AL).

Now we can prove the following theorem:

Theorem 2. The solution at an arbitrary fixed point (a,, to)e{(a, t) :0<a=< A,
0<t<T} of the problem (3.5) using a suitable mesh with a step At converges when
At—0 with rate of convergence O(At) to the exact solution of the population problem
(3.4) taken at the same point.

Proof. Let k and | are fixed such that a,=At.k, to=At.lL
I. We consider the case when k=1

ekl =lex— 10— 1-Wk—10-1—AE Wim 11— 1. Ok — 10— 1. a1 1 + O(AL?)]
Sllex-20-21 - Va-20-2+ AL W52 |Ok— 212 Ladle.,1-2]
+OAN Y- 14-1+ A W1 11 |Ok—14-1l Tadlec -1 |+ O(AP) <.
Slec-rol - Wk-10-- - Wi—1a-1+ A AW 141 N0k 1011 Ladle. 1-4l
+ oo+ W0 10k-rol - Tadde- ol Wi—14 1.1+ Wi-1,0-1}
+O0A?). (1 + Y- a-1+Vk-10-1-Yk-20-2+ -+
(4.6) coe 101 Yi-1,0)-

According to Theorem 1 all w,, are bounded. The inequalities (4.3) and (4.4)
yield the same for all Y, ; and 0, ;. Thus out of all multipliers in the right-hand side
of (4.6) only I,]|¢.,| has not been evaluated. So we consider

t K—1

A At
Iple. )l= 5 Aleoal +lexal+2 . Z Jgl} = 5 {E.Iple. .- 1]+ O(AL)
ji=1

+|8K—l.l—1-'/’K—I.I—I—At-wl(—l.l—l'ox—l.l—l -IAls'.l'—ll

K-1
+2. 2 lgjmra-1-Vj-ru-1— AL Wiy 1051 T 4}
ji=1
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2

At
S At.E. Iyle. iy |+ 1ale. -] + O(A?) + 5 AWk —10-1-0k—1,1-11

N W

K-1
+2 . Z W10 1111 Tadle. 1—4]
j=1

At? 3 )
g[—z— .C.D.2. K+ 5.At.E+1].IA,|e.',_1|+O(At )

3
<[(C.D.A+ ) CE).At+1]. 1 le. ,— 4|+ OAP)S ...

3 _
We denote (C.D.A+ 3 E)= P =constant

<(P.At+1). Iyl ol +[(P.At+1)" 1+ ... +1].0A) < .

Having in mind that (P.At+1)' is bounded by a constant we obtain

(P.At+1)—1 .
< - . )<
< P AL O(At*) < 0(AY)
4.7) =Inle. | < O(Ab).

The above inequality and the inequality (4.6) imply that
lex | SOAL?) [IWi—g4—1- Ok g -1 |+ ...
FIWk—r+ 11 - Ok—1+ 1,0 - W—14 1,1 Vi—1,0-1l]
.+0(At2).[1+¢k_1_,_,+...+t//,‘_1',_1...tp,‘_,+1'1]§(1—1).0(At2).C.D§O(At)

(4.8) =gl =SO0(At), Vk, I:k=I.

II. We consider the case when k<l Then

Ex1=Eou—k-Wi—10-1---Wour-k—At Wiy 1-1. 0y -1 - Ipk. -1 +...
FWig-ke1-Oti-kvt-Tak -k Vi-10-1-- - Wau-k+2}

4.9 +OA?). [T+ Yp—g g1+ oo FWh—ra—1- Wi g—k+1)
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The inequality (4.7) holds again because its verification does not'depend on
the relation between k and [. Therefore

leo -k SE. Inle. . 1—k— 1]+ O(At) = O(Ab).
The equality (4.9) and the last inequality imply that
lexadl S leou—il - W-1a-1l--NWou—ul + At {IWk— 11— 1. Ok 1,1-1]. O(AD) +...
Wik 11000 —ks 11O Wi— a1l W2+ 2l}
S 0 Vo I L Y I S /) PO | Wy |
(4.10) <O(At)+1.0(At?)+1.0(At?) S O(At)=> e, )| < O(AY)  Vk, 1:k<lI.
The derived estimates in (4.8) and (4.10) show that

|ex/—0 with rate of convergence O(At).
At—0

This completes the proof of Theorem 2.
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