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An Optimal Control Problem for the Heat Equation

Tsvetomir Tsachev

Presented by P. Kenderov

An optimal control problem for the heat equation with constrained boundary condition as control
function is considered. The constraints on the control are of L,-type and the cost functional is
quadratic. A constructive method for finding an e-solution is developed. The uniqueness of the solution
and its dependence on the problem data are studied.

1. Introduction

Let [>0, T>0 be given and Q,=(0, [) x (0, T). For any given ¢(t)e L, (0, T)
we denote by u(x, t; @) the solution of the following boundary-value problem for
the heat equation

u(x, t; @)—ux(x, t; ¢)=0, (x, )eQr
u 0, t; 9)=0; u(l, t; )=o) te(0, T)
u(x, 0; ¢)=0, x€e(0, ).

According to [2] u(x, t, ; @) € L ,(0, ]) for each t,€[0, T]. Using remark 8.7 on p. 199
in [11] we have

1 t o E t

(1) ulx,t:9)=—. {j q)(r)dr}.v,(xn 5 (—1p1y2 { I(p(t)e‘k“"’dr} )
JI G k=2 JI o

where 1, are the eigenvalues and v,(x) are the eigenfunctions of the elliptic

problem
v"(x)—A.v(x)=0,

v'(0)=v'())=0,
i.e.
A, =0, A= —(k—1)*n?/I? for k=2, 3,...,

0y(x)=1//1, v,‘(x)=%cos(k—l)n—lx for k=2, 3,....
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It is well-known that {v,()}i>,; form an orthonormal basis of L ,(0, ).
We shall use the following notations:
— N — the set of the natural numbers;

— [Ap](x) = u(x, T; ) for any given ¢(t)e L ,(0, T). It follows from (1) that
oo

2 A e T— .

(2 [Ap](x) N (_E(P( t)dt ¢ . vy(x)

- ;l (—1)"".%{}.(p(T—t)e‘k'dt}.v,‘(x)
0

k=2

— BT ={op(t)e L,(0, T); l@llL,0.m=1} — the closed unit ball of L,0, T)
— ABY)={f(x)eL,(0, ); f(x)=[A¢](x), ¢(t)e B]} — the image of BT

(3) H=cl {span {e*'}}>. |} = L,(0, T),

i.e. H is the smallest closed subspace of L,(0, T), containing the set {e*'} .
Since i, 1/]4,| < oo, we have L,(0, T)\H # @ (cf. [3], [4], [8]). Since H is closed in
L,(0, T), it is a Hilbert space endowed with the scalar product of L,(0, T).

— {Y, (1)}, — the set of functions obtained after orthonormahzmg the set
{e‘k'},‘ 1 by the Gramm-Schmidt method. We have

4) Mt = 2 aii-Y;(t) for each keN,

i=1

where a,, #0 for each ke N.
—L={x=(x;, X3..., ...); x;€R for each ieN and Z2,x7<o0};

—(x y),2 =32, Xy — the scalar product of /,;
— B, ——-{?celz; I|}|l,2§ 1} — the closed unit ball of I, ;
—X"=(X, X5..., x,)€ R" for each ?c=(xl, Xpyeuns X, Xp+1,---)ELy;
— (X, Y)gn=ZI-, x,y; for each X=(%Xy, Xp,e-e, x,)eR" and y=(y,, 5.-.., yJ)ER;
(5) — cl@)=13 @(t).e*'dt for each @()eL,(0, T) and each keN;
6) —dp)=(cy(@), c5(o).-., cu(®),...) for each @()eL,(0, T).
Since X7~ ,1/|A|<co, we have ?((p)&lz for each ¢()eL,0, T);
7) —Up={c(p); peF} for each subset F of L,(0, T);
- g)Lz(o.n=_ﬂ, f(x).g(x)dx — the scalar product of L,(0, I);
= Is,[/O1=((f V)L (0.0yr -+ A U..)Lz(o.n. e )e I, for each f()eL,(0, ).
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Since {v,(")}¢-; form an orthonormal basis of L, (0, /), the mapping Is, : L,(0, [)—I,
is an isomorphism between L,(0, ]) and I, i.e. the mapping Is; ! (x) is well defined
for each xel,.

—Is,;[00) =@, ¥ 0,105---5 (@5 YW, 0,1)---)El, for each ¢()eH. Since
{Y()}i=, form an orthonormal basis of H, the mapping Is, :H—l, is an
isomorphism between H and I,, i.e. the mapping Is; ! (x) as well defined for
each xel,.

— Prgx — the metric projection of xeX on K < X, where X is a Hilbert
space, K is closed convex subset of X, and || - [« is the norm in X, i.e.||[Prgx—x||x
=min,e g 12— xlx.

2. Statement of the problem and finite-dimensional approximation

For any given y(-)e L ,(0, I) let us denote J(¢, y)=[o|u(x, T; ¢)— y(x)|*dx.
Here we are interested in the problem

given y(")€ L,(0, /), minimize J(¢, y) over

(PO) the closed unit ball of L,(0, T)

and in a constructive method for finding an e-solution to it. So, denoting
I(Y)=inf||¢||L2(o'T)§, J(¢, y), we have the problem

given y()eL,(0, ) and £>0, find ¢, ()
(P1) from the closed unit ball of L,(0, T),
such that J(e,,, y)<I(y)+e.

Lemma 2.1. Let?,:(a,-,, i,y %ii—1, 0 0, 0,...)€l,, where a; #0 for each
ieN,

oSy, Gify - i f,
U S, Unfahy, - o f,
Un iy Gne Py -or BB,

for each neN, b(x)=(x, 7‘)12 for each xel, and ieN and let 3"(§)=(b1(§),
b,(X),..., b(x))eR" for each neN. Then ||§||,2§1 if (M;'B"(X), B"(x))an for
each neN.
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Proof. Let neN be fixed and 72‘=(a,~1, ®izyenes a; O,..., 0)eR" for
i=1,2,..., n. Since a;#0 for each ieN, {7?}2;, form a basis in R". Hence,
because of (7, fj),2=(7 . 7;)Rn for 1<i, j<n, the matrix M, ! is well defined.

Let X =(x,, X,,..., X,,...)€l,. Then §"=Z?=1§i7;’ and for j=1, 2,..., n

bX) =, f, =" 7;)Rn=( z &f 7;); 2 &G Fy

Hence, _5"(52)=M,,E, where E=(§l, &y E)ERM e, Z=M,,_‘77"(5c'). But

n
5 x3=ux"usn=(

i=1

z &S z fj7?>n,,=(M,.z, Eon =M1 '), B

i.e. for each neN we have _, x?<1 iff (M, 'b"(X), b"(x))an<1, which proves
the lemma.

Corollary. Let

T T T
[ et etr'dt [ et et2dt . Jett etntdr
0 V] ]
T T T
|2t etr'de [e*2t e*2'dt ... [et2t etntdr
o ] 0
M,=
T T T
[ e*nt . e*r'dt [ et e*2'dt [ et e*ndt
0 0 : (V]
for each neN and V,={(x,, x,,..., X,..)EL; (M1 X", XM 1}, for each
neN. Then >
@
®) UB, = U(M-)sH:lI«ﬂIIHél}: ﬂl Vs
ne

where UpT is defined by (7).

Proof. It follows immediately from (5), (6), and (7) that U BT = Upiren;toly sty
Using (4) and the mapping Is, : H—[, we finish the proof by directly applying
lemma 2.1.
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Lemma 2.2. Let E,=1/,/] and

1/4/1 0 S 0
0 —J2iJl ... 0

0 0 A e VNN for n>2,
) W,={(xy, X3r-evr Xp--)EL; ((E,M,E,] 'x", X")an<1}

for each neN and
W, ={xel,; x=1Is;[f()] for some f()e A(BY)}.

Then W =" W,.

Proof. Let 6 =(0,,0,,...,0,,...)e W_. Then, according to (2) and (5), there
exists @(t)e BT, such that 0,=c,(@)//I, 0,=(—1)""1/2¢c, @)/l for n=2,
where ¢(1)=@(T—t) e BT. Hence, for each neN we have 6"=E,c"(¢), i.e.
cM@)=E; ' 0™ It follows from (8) that (M ;! E;'0" E;'0™pn<1 holds true for
each neN,i.e. (E,M ,,E,,]“f)"', 5")Rn§ 1 for each ne N. Thus 6 € W, for each ne N,
ie. Wocn, W,

Now let 0 =(0,, 0,..., 0,,..)€ N3 W,. Let ¢,=./1.0, and c,=(—1)"""!
xOn\/i/\/f for n=2, i.e. E"=E,,“5" for each neN. Then

(M;1E" E™an=(M;YE; 10", E;'0")qu=(E,M ,E,] 10" 0"m<1

for each ne N. Because of (8) there exists ¢(t) € B such that c =(Cy, C3yevvy Cppevt)
=c(¢) (c(@) is defined by (6)). Let @(t)=@(T—t) e Bl and 0(x)=Z{2,0;.v,(x).
Then (2) yields [A@](x)=0(x), i.e. e W,. Thus W_on, W,.

Lemma 2.3. Let W, be defined by (9). Then W,o>W,,, for each ne \.
Proof.Letc =(c,, Cy-.., ¢, ... €L, be fixed and let x=(x,, X,..., X,,...)EL,
be defined by
ap1Xx, =c,
az1X, +4z3X, =c,
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where {a;;}{2, -, are the coefficients in (3). Then as in the proof
of lemma 2.1 we obtain X', x?=(M;'¢" ¢"an for each neN. Hence
(M;1,¢m, Ent Y =12 X2 220 x?=(M,' c", ¢"gn for each ¢ €l,. Thus
W,>W,,, because of (9).

Lemma 2.4. The set W, defined by (9) is a closed convex subset of I,.

Proof. This fact is clear because the matrix M, ! is positive for each ne N.
Let W,={f()eL,(0, ); f()=Is; '(x) for some xe W,} = L,(0, I) for each
neN. Lemmata 2.2, 2.3 and 2.4 yield
) ABD = W,
(10) ii) W,oW,,, for each neN;
iii) W, is closed convex subset of L,(0, I) for each ne N.

It follows immediately from (10) that the sequence of sets W, converges in the
sense of Mosco to the set A(BT) (cf. Definition 3 on p.403 in [6]). In
particular i) and iii) yield that A(B7) is closed convex subset of L, (0, /). Hence, for

each y()e L, (0, I). [Pry, 1) —Praa?,y0) 1 0. — O (theorem 4 on p.403 in [6]).

Let us denote y"(x)=Zi-1 (V. VL, 0. 0u(X) for each y()eL,(0, I). Since
1" =y llL,00—> 0 and || Prex—Prgyllx<[|x—yIx for each x, yeX, where X

is a Hilbert space and K is a closed convex subset of X (cf., e.g. [10]), we see that
[ Pry, y"()— PTA(BIT)Y(') I Ly0n= I Pry, y"()— Pry, y() ”Lz(o,l)
+ I Pry, y()— PTA(BT),V(') 2,00 = 1Y) =¥ Ly

+ || Pry y()— PrA(Br),V(') lz,c0.0 "—_:; 0.

So we have

(1) [1Pry, y" ()= YOl E 00 > [IPrag],y0)—x0) I1Z 0.0 =1(3)-

Since (y", vk)Lz(O-l)z(y’ vk)Lz(o.’) for k=1, 2,..., n and (yll, vk)Lz(O.l)=0 for
k=n+1, the problem of computing Pry y*() is finite-dimensional, namely

find the projection of the point ((y, v)L, 0.5, (¥, vp)rL,0n)€R" On the set
WiE={x"=(x,, X5..., X,)€R"; ([E,M,E] 'X" X"an<1}.
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Let (vy, v5,..., v,)EW}¥ be the solution of this problem, i.e.

(12) [Pry, y"Ol(x)= Z v,.0(x).
k=1

Using the method developed in [1], §3 we can find a function ¢(t) € H, such that

[Eowde=v 1, [§p@)e* dt =(— 1y 1v, . Jl/\J2 for k=2, 3,..., n, [T ¢(t)e* 'dt =0
for k=n+1. Let ¢, (t)=@(T—t). Then (2) and (12) yield

(13) (40,0 = Z v, 0,0)=[Pry, y](x).

k=1

It is easily seen that ¢,,eB. Because of (13) we can rewrite (11) as

J(Pyn, y)’:; I(y).

Thus, when solving (P1), we may take ¢, , for sufficiently large n as ¢, ,, i.e.
as an e¢-solution to the problem (PO).

3. Uniqueness of the solution to the problem (P0)
Lemma 3.1. Let H be defined by (3) and
(14) H,={p(t)eL,0, T); ¢(t)=¢(T—1) e H}.

Then (P0) has unique solution belonging to H,.

Proof. The function ¢(t)e BT is solution of (P0) iff [Acp](x)=[Pr,,(,,lT) y()I(x).
Let n(t)e BT be a solution of (P0) and #(t)=#n(T—t). Let fA(t) e H be such that
Il AC)—AC) | L2(0.T)=minw(')eli | () —#() "Lz(o,r)- Then u(t)=MT—t)eH, and
n—Aa (P)Lz(O.T):O for each @()eH, i.e. (n—p, (P)L2(O.T)=0 for each ¢()eH,.
Because of (2) [Au](x)=[A4n](x)=[Pr “er) Y()l(x), i.e. u(t) is the unique solution of
(PO) belonging to H,.

Lemma 3.2. The set E, ={f(x)€ L,(0, I); f(x)=[Ap](x) for some ¢(t)e H,} is
dense in L,(0, ).

Proof. It is clear that the set

E,={f(x)eL,(0, I); f(x)= Z z;.v(x). neN, (z,, z,,..., z,)€R"}
k=1
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is dense in L, (0, I). According to corollary 3.2, §3 in [1] (p.279) we have E,cE,,
which proves the lemma.

Lemma 33. Let BI={p()eL,(0, T); ¢lLy0mn<1} and ABD)={f(x)
€ L,(0, I); f(x)=[Ap]l(x) for some ¢(t) e BT} Let y(- )¢A(BT) and ¢ (t)e BfnH, bea
solution of (P0O). Then | ¢, || Lyo0n=1

Proof. This proposition follows directly from the Kuhn-Tucker theorem
([7]1; pp.261-262).

Theorem 3.1. Let BT = {qg(') e L0, T); ll@llL,0.mn <1} A(iif) ={f(x)e L,(, ]);
f(x)=[A@]l(x) for some @(t)e B]}, H be defined by (3), H, be defined by (14), and

Hl={o()eL,0, T); (9. Nr,0.n=0 for each n()eH}.
a) If y()¢A(BT) the solution of (PO) is unique.
b) Let y()eA(BT) and ¢ (t) be the unique solution of (PO) from H,. Then

def.
= =1—|o, ||L2(o Ty is positive and

(15) Sy <= {@, () +h(®); hO=HT—1) eHL, |kl 0.1n<C}
is the set of all solutions of (PO).

Proof. a) Let ¢ (t)e Bl nH, be a solution of (P0) (lemma 3.1) and 5(t)e B
be an arbitrary solution of (P0). Because of (2) and [A@J(x)=[An](x)
=[Pr “BlT) y()I(x) we have 7(t)—¢ ()=n(T—t)—e(T—t)eH 1. Hence

||'1||L2(o n=713 Lyo.n=® "Lz(o nt+li—¢ ”L2(0 T)

= (Py||12‘2(o.'r) +1h—¢ yllfz(o,r)-

Since ||, lIZ,0.1y=1 (lemma 3.3), we have 7()=¢ ,(), i.e. n()=0,().

b) Let y()eA(BT) and ¢ € BTnH, be such that [A(p,](x) [PrA(,, T v()Nx)
=y(x). Then C—I—lwy ||L2(o 1>0. Let h(t) be such that h(t) T —1) eH'
and ||h||f,0m = Ih IZ,0.m <{ Because of (2) we have [A(p,+ h)(x)
=[A¢J(x)=y(x). Since ¢ ,eH,

lo,+hl,on=1¢, +hi3 L0.n=10 IL0n+1hli0n=1

Hence S,., (defined by (15)) consists of solutions of (PO).
Now let ¢ (t) +h(t) be a solution of (PO). Since [A(@, + h)](x) = y(x) =[4¢,](x),
(2) yields A(t)=h(T—t) e H.. Since ¢ (t)=¢(T—t)e H, we have
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2 A 2 — 1l 112
oy +hlL,0n=I¢ y+5|| Ly0.n=19,li,0.n+ ”ﬁ”Zl‘z(o,T): ||(Py"i2(o,r)+ Al %2(0.1)-

Because of || @, +hl|f,0.n=1 lh “’2-2(0-” <1-— ||<Py||12,2(o.r)=<: holds true. Thus each
solution of (P0) belongs to S,).

4. The dependence of the solution to the problem (P0) on y()e L,(0, ])
The principal result in this section is theorem 4.1. Its proof will be prepared
by five lemmata.

Lemma 4.1. Let {a;;}}{2 =, be the coefficients in (4), the operator A : 1,1, be
defined by

(16) Al(x 4, Xp0-evr Xpo-)]=(a11Xy, 21Xy +822X5,..., Z GuiX;,...)
i=1

for each x=(x,, X5,..., X,,...)El, and R(A)={y €l,;y=Ax for some x€l,}. Then
the operator A :1,—1, zs compact and injective and R(A) is dense in I,.

Proof. Using the mapping Is, : H—I, we have

-] i o T 1 ®
b [Z a,-zj:|= T [ePttdt< T+§ T 1/|4;] < 0.
Jj i

i=1Lj=1 i=1 0 i=2

Defining 4, : I,—1, for each neN by

n
A [(xy, x5..., X, .. N =(ay11X;, G21%,+a23%5,..., Z ayx; 0, 0,..., 0,..)),
i=1
we have
oo i 2 o i
sup [[Ax —A,x|f,= sup Z T oax| = = [E a,?j] —0
I1xl,S1 I1XI,st i=n+1 Lj=1 i=n+1 Lj=1 n—ow

Then A is compact according to the theorem on p. 290 (Ch. 6, §3) in [9].
Since a,;#0 for each ieN, A is injective.
Lemma 3 2 and the mapping Is, :H — 1, yield the fact that R(A) is

dense in [,.
Lemma 4. 2. Let A : I, — I, be defined by (16), A* :1, —1, be the adjoint

operator of A and D :1, —»l be defined by D=4 . A*. Then

a) there is unique positive operator \/D 1, > 1, such that \/D \/D D.

b) there is an orthonormal set {Z]k},,= 1 < 1, of eigenvectors of \/D which form a
basis of 1,.

¢) the operator \/B is injective.
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Proof. a) Since D :1, — [, is positive and self-adjoint, according to theorem
2 on p. 246 (Ch. VII, § 3) in [12] there is unique positive operator \/D :1, — I, such
that \/D \/D D.

b) Since 4 : 1, — l, is compact, A* :1, > 1, is compact (theorem 4.19 on p.
119 in [13]). Then D=A . A* is compact (theorem 4. 18 f) on p. 118 in [13]). Since
D is compact and self-adjoint, there is an orthonormal basis {g,}i,; <[, of
eigenvectors of D ([12], [14]) with corresponding eigenvalues &, =0 (D is positive).

For each ke N we have

(VD +/& . 1d) (D — /&, . 1d)g, = (D — &, . 1d)g, =0,

where Idx =X for each x el,. Since \/ D is positive, (\/ D— \/ &, .1d)g, =0 holds true

for each ke N. Hence g, is eigenvector of \/ D with corresponding eigenvalue \/ &
for each keN.

c) Since #(A) is dense in I,, A* is injective (theorem 12. 10 on p. 335 in [13]).
Since A4 is ln_]eCtIVC D=4. Z* is injective too. Hence &, >0 for each ke N. Since

(17) \/B}=\/B( T (% —ék)12~_ék)= T V(0,9
k=1

k=1

for each xel,, \/D.x=0 implies x =0, because /&, >0 for each ke N. Hence JD
is injective.

Lemma 4.3. Let A :1, — 1, be defined by (16) and \/B 11, = 1, be defined as in
lemma 4.2. Let \/D(B,)={yel,; y=+/DX, | X|l,,<1} and AB )={yel,; y=Ax,
I 1l,,<1}. Then \/D(B,)=A(B,).

Proof. Let #D)={yel,; y=DX, }elz}. It is easily seen that

(18) JD(B,) "\ #(D)=A(B ,) () (D).

Let ¢=Ax, || x||,,<1. Since R(A*)= {y ely; y=A*x, xel,} is dense in I,(4 is
injective), we can find {A*y }=, | Z*y,,ll, <1 for neN, such that
llZ*f,,—-x]l,z—>0. Then if ¢, = A4*y ,=Dy, we have ¢ ,e/D(B,) for neN (see

(18)) and | c,—¢ |, — 0. Since /D(B,) is closed ¢ e/D(B;) holds true.

Now let ¢ =4x, |x[,=1 and ¢,=AGIcx) for neN. Then ¢,e./D(B,)
and |c, —CH, ——>0 i.e. ¢ e./D(B,). Hence Z(Bl)cJD(B,) The proof of

\/D(Bl)c:Z(B ,) is the same.

20
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Lemma 4.4. Let By(y ))={y €l,; |y =y oll,, <8} for y o€l, and >0, let A be
defined by (16), let A(B)={y €l,;y =Ax, [|X||,,<1} and X(y)=A"(Pr 3,,¥) for
each y el,. Then for each Byy,)<I,\A(B,) there exists a constant Co(d, ¥o).
such that

(19) 1% ) =% D)1, S Co(8. Yo)- 1V 1=V 211,

for each y, and y, belonging to By(Y o).
Proof. Let z(y)=/D~'(Pr pa,y) for each y el,. Since \/D(B,)=A(B,)
(lemma 4.3) we have x(y)=A4"' (Przp,y)=4"' (Prpz,y)=A4"" «/DZ(p).
Now let y,€l, and 8> 0 be such that By(y o) =I,\A(B ,)=1,\/D(B,). Because

of (17) we can apply theorem 3 a) from [5], i.e. there exists a constant C,(J, j;o)
such that

120/ ) =20 D, SC16. YY1 =Y 2l

for each y, and y, belonging to B,(y o)
It is easily seen that the operator 47! . \/B :1,—»1, is defined for each y €l,
and is bounded. Hence

150 ) = %0 )i, =147 e /DG ) — 20 Ny, S NI A™e/D .C4(8, F o). 1F 1 =5l

for each y, and y, belonging to B;(y,), i.e. (19) holds true with
Co0. Yo)=11A"1.\/D|l« C(5, ¥ o)

Lemma 4.5. Let B,(yo)={y €L, ; [y —Yoll;, <6} for yo€l, and >0, N : 1,1,
be defined by ’

(20)  N[(xy Xg0ever Xpooo N=01/s/ L =2%0/ /Lo er (=1 2%, /2/ /1. )

for each (x,, x,,..., X,....)€l,, let A be defined by (16) and N.Z(B,)={}elz;
y =N .Ax, u}n,zgl}; Then

a) NeA :1,-1, is injective operator;

b) for each By(yo)<I,\N « A(B,) there exists a constant C(5, y,) such that
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(1) 1IN« 417" (Pry.as Y1) =[N « 417" (Pry. 35, ¥2) 1, S C@, o) IV1 = V2,

for each y, and _)32 belonging to Bj;(y,).

Proof. a) Since A and N are injective, NeA is injective.

b) Since /D(B,)=A(B,) (lemma 4.3) and 4 :I,—l, is compact (lemma 4.1),
D : 1, -1, is compact too. Since N : I, -1, is bounded, N.\/B :1,—1, is compact
(theorem 4.18f) on p.118 in [13]). The operator NDN=[N.\/1_)].[\/B.N]
=[N .\/B].[N .\/l_)]* is self-adjoint, injective, compact and positive. Using the
operator /NDN as in lemma 4.3 we obtain N .\/B(Bl)=\/m(81),
where No./D(B,)={yel,; y=N« /DX, |X|,,<1} and \/NDN(B,)={yel,;y
=,/NDNX, ||}||,2§1}. Now let y,el, and 6>0 be such that By(y,)

cl,\N«A(B,)=1,\N .\/B(Bl). As in lemma 4.4 we can prove that there exists a
constant C,(J, y,) such that

” [N . \/B] - I(PrN.\/l_)(Bl)_.);l)— [N . \/B]— ! (PrN.\/B(B,)—j’z) ”12 § C2(5, _}.’o) . "_}.’1 __);2 ”12

for each y, and y, from By(y,). Since the operator 41 .\/l_) :1,—1, is bounded,
we have

I[N « A1 *(Pr y. /3ay V1) — [N o A1 (Pr v, y5sy V) li,
=[[A" e \/DY{[Ney/D] ™ *(Pry. jbiayy1)} —[A™ e /DKIN ¢ /D) (Pry, 5a ¥2)} I,

SIA7Y o YD Co8, Jo)- 13— V2 I,

for each y, and y, from ByJ,), i.e. (21) holds true with C(@, V)
=147 «/D|.C5(8, yo), because N o A(B,)=N «./D(B,).
In theorem 4.1 we shall need the following

Definition. Let X be a linear normed space and B={3c'eX, |[3c°||x<1}. For
each two subsets ¥V, and V, of X the number

d(V,, V,)=inf{e>0; V,cV,+¢.B and V,cV,+¢.B}

is called Hausdorff distance between V, and V,.
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Theorem 4.1. Let A(BIT)={f(x)€L2(O, D; f(x)=[4¢](x), ||(P"L2(0.T)§1} and
ABY) = {f(x) € Ly(0, D); f(x) = [49)(x), l®llL,0.m<1}.
a) Let y,()eL,0, I) and 6>0 be such that

By(yo () ={S()€L;(0, D; If() =yo() L0 =8} =Ly0, D\A(BY)

and let @ (t) denote the unique solution of (PO) for given y()€By(y, (*)). (Then there
exists a constant C(8, y, (")) such that

(22) oy ()= @y O lLy0.n=CE. yoO)- 1Y =y ()0

for each y'(-) and y" () from By(yo())-
b) Let S, denote the set of all solutions to (PO) for given y()eL,(0, 1)

(according to theorem 3.1a), if y()¢A(BT) the set S, consists of one element). Then
for each y e A(BBT/\A(BT) and for each e¢>0 there exists 6>0 such that

1y ()= yo() lLy00 < <é lmplles d(Syey Syy) <e.
c) For each yo()eA(BT) there exists a sequence {y,(")}si=1 < A(BT) such that

¥, ()=o)l Lz(o',)——>0 but nevertheless d(S, , S, does not tend to zero.

Proof a) It follows from (2), (3), (16), (20) and the definitions of
:L,(0, )»Il, and Is,:H—Il, that [Ap](x)=[Is{ ' e Ne Ao Is,p ()] (x) for
each o(t)e H,, where @(t)=¢@(T—1t). Since [Ao](x)= [PrA(,,r) y()(x) for each
y ()€ B4(yo()) and (p,()eB NH, (lemma 3.1), we have [Is;' .N.Z Is,0,()1(x)

—[PTA(BT)Y()](X) ie. Isp,()= [N-Z]—l{131[(PTA(BT)Y())(X)]} for each y()
eB,(yo()) Using (2) and (14) we have A(BY)= A(BlTnH) Hence A(BY)

=Is;i'eNe A Isz(Bl NH), ie Is [(PrA(B’{)y())(x)]_lsll(Prlsl .N.Z(BI)Y())(X)]
=Pr~.2(81)151."('), ie.

Is,¢,()=[N ¢ A] " « Pry_zs,)Is, ¥ ().
According to lemma 4.5 there exists a constant C(3, y,(-)) such that
15,0, ()—1Is,8,” (), £ CO, yo (). 1s1y" () —1Is,y" () Iy,
for each y'() and y” (") from By(y,(.)), i.e.
@y ()=?y () llLy0.m=C@ Yo 1Y ()—y" (‘)Allew.n

for each y'() and y"() from By(y,()). Since || ‘Py'(‘)—%”(')||1.2(o,r)=I| 0]
=, OllL,y0.1) (22) holds true.
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b) Let y,()e A(BT\A(BT) and the sequence {y, ()}, = L,(0, ) be such that
1Y ()= Yo O llLy0. —0. Let uy"eS,"(-) for each neN. It can be proved by

standard argument that
(23) {,uyn}ff’:l is converging to Py, weakly in L,(0, T)
(where Py, is the unique solution of (PO) for y()=y,()) and that

(24 I Hy, ||L2(o.'r)—_‘" Il Pyo ||L2(0,'I‘) .

Then (23) and (24) yield
(25) I Hy, ) Pyo Ol L,(0,T) “':' 0.

Let us assume that there exist ¢, >0 and a subsequence of {y, ()},%, which we
will denote also by {y,()}s% such that d(Syn(A), SYO(.,)gso. This means that for each
neN we have either S, (, &S, +&. BT, orS, ¢Syo(.)+so.§f. It follows from
here that either " "

(26) S, ¢S,"k(.)+ao. BT for a whole subsequence {y,,k(-)},‘fL,,
or
(27) Sy"k(.)¢S,0(.,+eo. BT for a whole subsequence {y,,k(-)},‘?=,.

Since Syo(‘)={(p&’o )}, o(26), as well as (27), contradicts (25).

c) Let y,()e A(B]) and ?y, be the unique solution to (PO) from H,
(lemma 3.1). Since H is infinite dimensional, (14) implies that H, is infinite
dimensional too. Let {n,(t)};-, be an orthonormal basis of H,. Since
(pyoeBleHl, we can find &> 0 such that ¢,(t) =0, () +&.n,(1)€ Bl nH, for each
neN. Then

(28) {p, ()}, is converging to (pyo(t) weakly in L,(0, T)
and ¢,(t)=¢, (t), where ¢, (t) is the unique solution to (PO) for y(x)=y,(x),
belonging to' H, (lemma 3.1). Let us define Vu(x)=[A4¢,()](x). Since
A :H,—L,(, ) is compact, (28) yields

Vs ()=o) lzy00= I[A@,]()— [A(Py0] ()2, 0.0 —n_:’ 0.

. Now let ¢, (t)+h, (€S, for each neN and ¢, (1)+hy(t)e S’o('" Since
h,(t)=hT—t)e HL. and h(t)=ho(T—t)€ HL (theorem 3.1%)), we have

ey, +hy—(@,, +ho)ll ion=le,— @y, | i,0.m+ 1h,—h, I1Z,0.1)

2
2 || @p— @y, 1201 =8
Hence d(S, ¢, S, o) =&
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