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The aim of the paper is to prove compactness theorem for universal conjunctive formulas of
Lurp, for both absolutely continuous and singular cases.

The similar result for L ,» logic was proved by D. Hoover (see [2]).

Let o be a countable admissible set and wesf. The logics L:",l‘,2 and

L:"‘,l p, ar€ similar to the standard probability logic L .»p- The only difference is

that two types of probability quantifiers (P,xX 2r) and (P,X =r) are allowed, and
their common syntax will be denoted by L tPyPy* We shall see the difference in
semantics later.

The following type of models are relevant for us.

Definition 1. A graded biprobability structare for L is a structure M=(M,

Ri, ¢js MiDiel, jes. meN, k=1,2 Such that:

a) Each 4} is a countably additive probability measure on M™.

b) Each n-placed relation R, is uf-measurable and identity relation is
u%-measurable.

C) ’l:X[t:S[l:.,,..

d) The symmetry property holds; that is, each u* is preserved under
permutations of {1,...,n}.

) {ux|neN) has the Fubini property: If B is u ,, measurable, then

(1) For each X eM™, thesection By ={y | B(X, y)} is p*-measurable.

(2) The function f(X)=ps(By) is p-measurable.

() [f(X) dpur=pm+n(B).

Definition 2
a) A graded biprobability structure for L®

PPy
structure M such that u!<«pu? for each neN.
b) A graded biprobability structure for L*

PP
structure M such that u! | u2 for each neN.

If M is a graded biprobability model, quantifiers are interpreted in the
natural way, i.e.

logic is a graded biprobability

logic is a graded biprobability
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M= (P, X Zr)p(X) iff pk{XeM"|ME o(X)}=r for k=1, 2.

Now we shall discuss in short finite compactness in general. Let L be a logic
and let ® be a set of formulas of L, i.e. ®<L.

We say that the logic L satisfies finite compactness, with respect to the set ®,
if for each T<®, for which each finite subset T,< T has a model, T also has
a model.

It is well known that the finite compactness for large class of logics fails. The
following example shows that L, and L vp,p, CanNOL satisfy full compactness.

Example: Let T={(Px§%)R(x)|neN}u{(Px>0)R(x)}, where R is a unary

predicate. Then each finite subset of T has a model, but not T itself.

So this is the reason why we are looking at a part of L ’PyPy satisfying finite
compactness property.

The following definition is an extension of Hoover’s definition (see [2]).

Definition 3. The set of universal conjunctive formulas of L ’PiPy is the least

set containing all quantifier-free formulas and closed under arbitrary A, finite v,
and the quantifiers (P{X 2r) and (P,X 7).
We need the following definitions.

Definition 4. A weak structure for L ’PyPy is a structure M=(M, R,, <

UrDie 1, je 7, ne N, k=1,2 Such that each g is a finitely additive probability measure on
M" with each singleton measurable and (in respect to the natural definition of
satisfaction) the set {beM"|ME ¢[d, b 1} is pu,-measurable for each
o(x, j)')eLWI‘,2 and deM™

Definition 5 g

a) A middle structure for L;Pl Py is a weak structure M for L ‘’PyPy such that
the following holds:

For each &> 0 there is a >0 such that for each ¢(x, y)eL,,

pi{beM"| M ¢[d, b]}<d, then p*{beM"| Mk ¢[d, b]}<e.

b) A middle structure for Lj”l Pzis a weak structure M for L . such that

and de M™, if

PPy

the following is true:
There is a set B M such that p}(B")=1 and u3(B")=0.
We need the following lemma:

Lemma. A sentence peL Py p, IS CONSiStent if and only if it has a middle model in

which each theorem of L wPyPy is true.

For the proof in the L:'.,Pl p, Case see [3] (Lemma 2) and in the L:”,l p, Case see
[4] (Lemma 2).

Now we can state our main result:
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Theorem (Finite Compactness Theorem for L iy Logic)
Let T be a set of universal conjunctive sentences of L riPy If every finite

subset of T has a graded model, then T has a graded model.
Proof The proof is based on the following three constructions:
ultraproducts, Loeb measure and embedding of biprobability logic into L.
Let us suppose that each finite subset ¥ = T has a model My. By Lemma we
can suppose that My is a middle model. Take an ultraproduct *sm=1}§m, such

that, for each @eT, almost every My satisfies ¢. Form a graded biprobability
structure M from *IM by Loeb construction. Then by induction, we can show that
every universal conjunctive formula true in almost all My holds in M too.
In the language K, (see [3], Lemma 2) the condition of absolute continuity can be

expressed by the following formula

(Ve>0) (36> 0) (VXN u(X) <d—>p,y(X) <é).
Also, the singularity condition can be expressed with

AXNp2(X)=0Ap,(X)=1).

Both of these are first order sentences. So by the ordinary Los’s theorem and
Loeb construction sentences hold in *MM and M too.
For the same reason as in [2] for L, logics this result cannot be extended to

biprobability models (for which u,=u™). The same example would work.
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