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Let E be an Archimedean Riesz space, X a nonempty set, and #(X, E) the Riesz space of all
functions X —E. Suppose that L is a Riesz subspace of #(X, E) satxsfymg {f(x):feL}=E for all xeX.
It is shown that the f-algebra Orth (L) can be embedded via a function @ into the f algebra #(X, Orth
(E)), and that ® embeds the center Z(L) with its uniform norm isometrically into % X Z(E)) uipped
with the supremum norm. If E is a Banach lattice, X a locally compact Hausdo
and L a Riesz subspace of €(X, E) satisfying some additional conditions, then ® maps Orth (5] resp
Z(L)) onto the af;ebra €*(X, Z(E))(resp. €3(X, Z(E))) of all strongly continuous (and bounded)
Z(E)—valued functions on X.

Intr_oduction

There is by now a large amount of literature devoted to the study of
orthomorphisms on Archimedean Riesz spaces. See for example [1], [2], [3], [5], [8]
and [9]. In some special cases the orthomorphisms on a Riesz space L are
described directly in terms of L. This holds in particular when L is an
Archimedean unital f-algebra [8, Theorem 3], and also in the following cases:
(1) L is a Riesz space that consists of real functions defined on some point set
X [8, Theorem 4].

(2) L is a Riesz space of all real continuous with compact carrier defined on
a locally compact Hausdorff topological space X [8, Theorem 5].

Let E be an Archimedean Riesz space and let #(X, E) be the Riesz space of
all functions X —E (with pointwise defined operations). The main purpose of this
note is to generalize (1) and (2) on Riesz subspaces L of #(X, E). Orthomorphisms
on L are represented by certain functions X —Orth(E) what is done by embedding
Orth (L) as a Riesz subalgebra into the f-algebra #(X, Orth(E)) with pointwise
defined operations. The established embedding @ gives also a more detailed
description of the center Z(L). Namely, it is shown that ® maps Z(L) equipped
with the I,-uniform norm isometrically into the f-algebra % (X, Z(L)) of all
bounded functions X —Z(L) normed by the supremum norm. It is proved also
that in many cases Orth (L) can be completely described by recognizing the
range of .
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Let E be a Banach lattice and X a locally compact Hausdorff topological
space. Denote by ¥(X, E) the Riesz space of all continuous functions X —E
(pointwise defined operations), and by ¢ (X, E) its subspace of all functions with
compact carrier. Furthermore, let €%X, Z(E)) denote the Riesz algebra of all
functions X —Z(E) which are continuous for the strong operator topology on
Z(E), and let ¢3(X, Z(E)) be its subalgebra of bounded functions. It is shown that
if a Riesz subspace L of ¥(X, E) satisfies some additional condition, then
orthomorphisms on L can be represented by functions of ¥(X, Z(E)). The
surjectivity of the embeddings Orth (L)-%¥%X,Z(E)), Z(L)-¥3X, Z(E)) is
investigated and confirmed in particular for spaces L=%(X,E),¥.(X, E).

For the theory of Riesz spaces and orthomorphisms we refer the reader to [4],
[9], [6] and [2]. The terminology and notation will be standard. If E is a Riesz
space, Orth (E) denotes the f-algebra of all orthomorphisms on E and Z(E) the
center of E which consists of all TeOrth (E) dominated by a multiple of the
identity I of E. The Ig-uniform norm on Z(E) is defined by

| Tllzey=inf {A>0:|T|< AIg}.

It is well known that if E is a Banach lattice then Orth (E)=Z(E), and the
Iz-uniform norm on Z(E) coincides with the operator norm.

Results

Let E be an Archimedean Riesz space, X a nonempty set, and L a Riesz
subspace of #(X, E). We shall start with a simple but useful lemma.

Lemma 1. Let TeOrth (L), f, geL, and xeX. Then f(x)=g(x) implies
T(N)x)=T(g)(x).

Proof. Put h=|f—g|, assume without loss of generality that T=0, and
observe that it suffices to show that T(h)x=0. To this end set

T,._—'T—'TMIL, n=l, 2,...,

note that T,(h)(x)= T (h)(x) (when f(x)=g(x)), and use the well known inequality
0<T,=(1/m)T? to get

0= T(h)(x)=T () (X)=(1/MT*h)(x), n=1, 2,...

Since E is Archimedean this yields the desired equality T (h)(x)=0.
The following result generalizes [8, Theorem 4].

Theorem 1. Let L be a Riesz subspace of #(X, E) such that {f(x): feL}=E
Jor all xeX. Then Orth (L) is embedded as a Riesz subalgebra into the f-algebra
F(X, Orth (E)) via the function ®:Orth (L)—»%#(X, Orth (E)) defined by

AT)(X)W)=T()(x); feL, f(x)=u€eE.
The restriction ®,=® |z, embeds Z(L) isometrically into ¥ ,(X, Z(E)).
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Proof. Let TeOrth (L) and xeX. By Lemma 1 ®&(T)(x) is a well defined
linear mapping on E which is also regular (hence order bounded) since
O(T)(x)=D(T*)(x)—D(T~)(x) and the maps &(T*)(x), &(T~)(x) are positive. To
see that ®(T')(x) is an orthomorphism on E we may therefore assume without loss
of generality that T=0.

Suppose u, veE satisfy uAv=0. Take f, geL such that f(x)=u, g(x)=v,
and put

Si=If1=IfIAlgl,  g,=Igl—If1Algl.
Since f; Ag,=0 and TeOrth (L), it follows that

B(T) (x) WAV =T (f,) ()Ag, () = (T (f)Ag,) () =0,

thus @(T') is band preserving as claimed.

It can be easily verified that ® is an injective homomorphism of Riesz
algebras, hence ® embeds Orth (L) into #(X, Orth (E)).

In order to prove the remaining part of the theorem suppose that TeZ(L)
and observe that

| T|SAIL(0<AeR)—|W(T)|(z) < Alg for all zeX.
It follows that ®, embeds Z(L) into % ,(X, Z(E)) and
I T ll zy=sup | ®(T)(2) ll z;y= O(T) |l

ze X

which completes the proof.
If L=%(X, E), then ® is an isomorphism of Orth (L) onto #(X, Orth (E)).
Its inverse ¥ =®~! satisfies

¥(p) () (x)=p(x) (f(x))
for all pe# (X, Orth (E)), fe#(X, E), xeX.
Let A be a Riesz subalgebra of #(X, Orth (E)). A Riesz subspace L of #(X,

E) is said to be A-invariant whenever L is invariant for all ¥ (p), peA4. Note
that if L is A-invariant, then

¥, () (N=Y()(f); peA, feL

defines a Riesz algebra homomorphism ¥, : 4—Orth (L). It is trivial to verify that
Ac #,(X, Z(E)) implies that the range of ¥, is contained in Z(L). Note that
a=®(¥ (a)) for all aeA, so the next result follows easily.

Corollary 1. Let A be a Riesz subalgebra of #(X, Orth (E)) and let L be an
A-invariant Riesz subspace of #(X, E) such that {f(x):feL}=E for all xeX. If
A contains the range of ®, then ® maps Orth (L) isomorphically onto A. If in
addition A is a subset of F (X, Z(E)), then ®, is an isometric isomorphism of Z(L)
onto A. ]

Let from now on E be a Banach lattice, X a locally compact Hausdorff
topological space, and let L be a Riesz subspace of é(X, E), the Riesz space of all
continuous E-valued functions on X under the pointwise ordering. Denote by
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%°(X, Z(E)) the vector subspace of #(X, Z(E)) consisting of all functions which
are continuous for the strong operator topology € on Z(E). Observing that ¢ is
locally solid it is easy to see that ¥*(X, Z(E)) is a Riesz subspace of #(X, Z(E)). By
the uniform boundedness principle every pe%*(X, Z(E)) is bounded on each
compact subset of X, hence locally bounded. It follows by standard arguments
that ¢°(X, Z(E)) is closed for pointwise defined multiplication and therefore
a Riesz subalgebra of #(X, Z(E)). Let ¥;(X, Z(E)) denote the subalgebra of
€°(X, Z(E)) consisting of all bounded functions. It is routine to verify that under
the supremum norm

ol =sup | p() 2, PEE(X, Z(E))

3 (X, Z(E)) becomes a Banach lattice subalgebra of #,(X, Z(E)).

Theorem 2. Let L be a Riesz subspace of €(X, E) satisfying the following
condition. For each x,eX and ucE there exists a nelghborhood U of x, and
a function feL such that f(x)=u for all xeU.

If Lis ‘K’(X Z(E)yinvariant, then Orth (L) is 1somorph1c to the f-algebra
€ (X,Z(E).If Lis €;/(X, Z (E))-mvarlant then Z(L) is isometrically isomorphic to
the Banach lattice algebra ¢} (X, Z(E)).

Proof. According to Corollary 1 it suffices to show that 4=%¢*(X, Z(E))
(resp. A=%}(X, Z(E))) contains the range of ®. To this end let TeOrth (L) (resp.
TeZ(L)), fix any x,€X. ueE, and choose an element feL such that f(x)=u for all
x from some neighborhood U of x,. Then

O(T) (x) () — (T (xo) (@) = T () (%)= T (f) (xo)

holds for all xeU. It follows that ®(T)eA, so the proof is complete.
Our next result provides us with some ¢*(X, Z(E))-invariant and some €} (X,
Z(E))-invariant Riesz subspaces of ¥(X, E)

Lemma 2. The space ¢(X, E) as well as every order ideal of €.(X, E)is
%*(X, Z(E))-invariant. Every order ideal of ¥(X, E)is ¥;(X, Z(E))-invariant.

Proof. Let pe¥*(X, Z(E)) and fe¥(X, E). Fix some x,eX, choose
a compact neighborhood K of x, and observe that
lpllx=sup {ll p(x)Il : xe K} < co.
The estimate

1p() () = p(x) [ (x)ll = [l () 1 f(X) =S (o)l + I (2(X) — p(x0)) S (xo)

shows that the function xr—p(x)(f(x)) is continuous at x,, hence ¥(X, E) is
€*(X, Z(E))-invariant.
If f has compact carrier K, then

)= pllklf(x) for all xeX,

therefore every order ideal of ¢.(X, E) is ¢°(X, Z(E))-invariant.
If pe¥i(X, E), then
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[P)TEPI= el 1f(x) for all xeX,

and the remaining conclusion of lemma follows easily.

Denote by €,(X, E) the Banach lattice of all bounded E-valued continuous
functions on X with the supremum norm, and by €,(X, E) its Banach sublattice
of functions vanishing at infinity. Observe that €(X, E), €,(X, E), €,(X, E) and
€.(X, E) satisfy the conditions of Theorem 2, so the next generalization of some
classical results follows.

Corollary 2. Let X be a locally compact Hausdorff topological space and let
E be a Banach lattice. Then the f-algebras Orth (€ (X, E)) and Orth (€,(X, E)) are
isomorphic to the f-algebra €*(X, Z(E)),while Z(¥(X. E)), Z(€¢,(X. E)), Z(€ (X, E))
and Z(¥¢.(X, E)) are isometrically isomorphic to €} (X, Z(E)). :
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