Mathematica Balkanica

Mathematical Society of South-Eastern Europe
A quarterly published by
the Bulgarian Academy of Sciences – National Committee for Mathematics

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Mathematica Balkanica visit the website of the journal
http://www.mathbalkanica.info
or contact:
Mathematica Balkanica - Editorial Office;
Acad. G. Bonchev str., Bl. 25A, 1113 Sofia, Bulgaria
Phone: +359-2-979-6311, Fax: +359-2-870-7273,
E-mail: balmat@bas.bg
Quadrature Formulae for Entire Functions with 2-Periodic Data

Dimiter P. Dryanov

Presented by P. Kenderov

Quadrature formulae with equidistant nodes involving 2-periodic data of not necessarily consecutive derivatives are considered in the present paper. Theorem 4.1 answers the question of existence and uniqueness of such formulae which have the highest degree of precision with respect to entire functions of exponential type. The quadrature formulae of the highest degree of precision are obtained without knowing the corresponding interpolation process.

1. Introduction

Quadrature formulae with equidistant nodes involving 2-periodic data of not necessarily consecutive derivatives are considered in the present paper. Theorem 4.1 answers the question of existence and uniqueness of such formulae which have highest degree of precision with respect to entire functions of exponential type. The quadrature formulae of highest degree of precision are obtained without knowing the corresponding interpolation process. Former results of R. P. Boas [2], R. Kress [5], P. Olivier and Q. I. Rahman [6] and the result given in [3] are particular cases of our result. A representation of the remainder for functions belonging to a certain Sobolev space is given.

2. Problem formulation

Let R be the real axis and denote by $B_{\gamma,1}$ the set of all entire functions of exponential type γ which belong to $L_1(R)$. Further, let $k=(k_0, k_1, \ldots, k_{m-1})$ and $k'=(k'_0, k'_1, \ldots, k'_{m_1-1})$, $0=k_0 < k_1 < k_2 < \ldots < k_{m-1}$ and $0\leq k'_0 < k'_1 < k'_2 < \ldots < k'_{m_1-1}$ ($m \geq 1$, $m_1 \geq 1$) where k_s, $s=1, 2, \ldots, m-1$ and k'_j, $j=1, 2, \ldots, m_1-1$ are integers. We shall denote by S the class of all complex valued functions which are defined on the real axis R.

Suppose that for a function $f \in S$ we are given the following 2-periodic information:

$$f^{(k_s)}\left(\frac{2\nu\pi}{\sigma}\right), \quad \nu=0, \pm 1, \pm 2, \ldots, s=0, 1, 2, \ldots, m-1,$$
\begin{equation}
 f^{(k_j)}(\frac{2v+1}{\sigma} \pi), \quad v=0, \pm 1, \pm 2, \ldots, j=0, 1, 2, \ldots, m_1-1.
\end{equation}

Let us determine the following expressions based on the data (2.1):

\begin{equation}
 f_{\sigma,0}^{(k_j)} = \sum_{v=-\infty}^{\infty} f^{(k_j)}(\frac{2v\pi}{\sigma}), \quad s=0, 1, \ldots, m_1-1
\end{equation}

and

\begin{equation}
 f_{\sigma,0}^{(k_j)} = \sum_{v=-\infty}^{\infty} f^{(k_j)}(\frac{2v+1}{\sigma} \pi), \quad j=0, 1, \ldots, m_1-1.
\end{equation}

The problem is to find a quadrature formula, determined by the 2-periodic information (2.1) of the form

\begin{equation}
 \int_{-\infty}^{\infty} f(x) \, dx \approx \frac{2\pi}{\sigma} \sum_{s=0}^{m_1-1} c_s f^{(k_s)} + \frac{2\pi}{\sigma} \sum_{j=0}^{m_1-1} d_j f^{(k_j)}
\end{equation}

c_s, \ d_j \text{ are complex numbers, so that this quadrature formula possesses highest degree of precision.}

Definition 2.1. A quadrature formula of the form (2.3) has entire degree of precision $\gamma>0$, when it is precise for every function $f \in B_{\gamma,1}$ and for every $\delta>0$ there exists a function $g \in B_{\gamma+\delta,1}$ for which the quadrature formula is not precise.

We shall use HEDP for “highest entire degree of precision”, EDP for “entire degree of precision” and Q. F. for “quadrature formula”.

The solution of this problem will depend on the number of even integers in the vectors \vec{k} and \vec{k}'. Thus let ω_e and ω'_e denote the number of even integers in the sets $\{0=k_0<k_1<\ldots<k_{m-1}\}$ and $\{0\leq k'_0<k'_1<\ldots<k'_{m_1-1}\}$, respectively. Let ω_0 and ω'_0 denote the number of the odd integers in the above sets, so that $\omega_e+\omega_0=m$ and $\omega'_e+\omega'_0=m_1$.

3. Auxiliary results

Let \hat{g} denote the Fourier transform of a function g. Further, let $k^*=\max(k_{m-1}, k'_{m_1-1})$ and $W_1^{k^*} BV$ be the usual Sobolev space with $f^{(k^*)} \in BV(R)$. Let $\omega \geq 0$ be integer and $\vec{c}=(c_0, c_1, \ldots, c_{m-1})$ and $\vec{d}=(d_0, d_1, \ldots, d_{m_1-1})$.

Lemma 3.1 (Poisson summation formula), [7]. If $f \in S \cap L_1 \cap BV$ then for every $a \in R$

\begin{equation}
 \sum_{k=-\infty}^{\infty} f(a+\frac{2k\pi}{\sigma}) = \frac{\sigma e^{ika}}{2\pi} \sum_{k=-\infty}^{\infty} f(x) e^{-ikax} \, dx
\end{equation}

where $f(x) = \frac{f(x+0)+f(x-0)}{2}$ for $x \in R$.

Lemma 3.2 [4]. Let $0<t_1<t_2<\ldots<t_q$ and $m_1<m_2<\ldots<m_q$ be distinct real numbers. Then
Lemma 3.3. Let $0 < t_1 < t_2 < t_3 < \ldots < t_{q+q_1}$, $0 < b_1 < b_2 < b_3 < \ldots < b_{q+q_1}$, $t_0 > 0$, $b_0 \geq 0$, $m_1 < m_2 < m_3 < \ldots < m_{q+1}$ and $n_1 < n_2 < n_3 < \ldots < n_{q+1}$, are real numbers. Then

\[
\begin{vmatrix}
 t_{11}^m & t_{12}^m & \ldots & t_{1q}^m \\
 t_{21}^m & t_{22}^m & \ldots & t_{2q}^m \\
 \vdots & \vdots & & \vdots \\
 t_{q1}^m & t_{q2}^m & \ldots & t_{qq}^m \\
\end{vmatrix} > 0.
\]

![Equation](image)

\[
\text{Lemma 3.3. Let } 0 < t_1 < t_2 < t_3 < \ldots < t_{q+q_1}, 0 < b_1 < b_2 < b_3 < \ldots < b_{q+q_1}, t_0 > 0, b_0 \geq 0, m_1 < m_2 < m_3 < \ldots < m_{q+1} \text{ and } n_1 < n_2 < n_3 < \ldots < n_{q+1}, \text{ are real numbers. Then}
\]

\[
\begin{vmatrix}
 t_{11}^m & t_{12}^m & \ldots & t_{1q}^m & -b_1^m & -b_2^m & \ldots & -b_{q}^m \\
 t_{21}^m & t_{22}^m & \ldots & t_{2q}^m & b_1^m & b_2^m & \ldots & b_{q}^m \\
 \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
 t_{q1}^m & t_{q2}^m & \ldots & t_{qq}^m & -b_{q1}^m & -b_{q2}^m & \ldots & -b_{qq}^m \\
\end{vmatrix} > 0.
\]

\[
\text{Lemma 3.3. Let } 0 < t_1 < t_2 < t_3 < \ldots < t_{q+q_1}, 0 < b_1 < b_2 < b_3 < \ldots < b_{q+q_1}, t_0 > 0, b_0 \geq 0, m_1 < m_2 < m_3 < \ldots < m_{q+1} \text{ and } n_1 < n_2 < n_3 < \ldots < n_{q+1}, \text{ are real numbers. Then}
\]

\[
\begin{vmatrix}
 t_{11}^m & t_{12}^m & \ldots & t_{1q}^m & -b_1^m & -b_2^m & \ldots & -b_{q}^m \\
 t_{21}^m & t_{22}^m & \ldots & t_{2q}^m & b_1^m & b_2^m & \ldots & b_{q}^m \\
 \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
 t_{q1}^m & t_{q2}^m & \ldots & t_{qq}^m & -b_{q1}^m & -b_{q2}^m & \ldots & -b_{qq}^m \\
\end{vmatrix} > 0.
\]

\[
\text{Proof of Lemma 3.3. Let us denote the first determinant by } D_1 \text{ and the second by } D_2. \text{ By Laplace's rule on determinants we get for the first determinant:}
\]

\[
D_1 = \sum_{1 \leq i_1 < i_2 < \ldots < i_q \leq q+q_1} (-1)^{(a_{i1+1})} (-1)^{i_1+i_2+\ldots+i_q} D(i_{12}\ldots i_q) D(i_{12}'\ldots i_{q1}).
\]

By Lemma 3 we obtain:

\[
\text{sign } D(i_{12}\ldots i_q) = +1 \text{ and sign } D(i_{12}'\ldots i_{q1}) = (-1)^{i_1'+i_2'+\ldots+i_{q1}} \text{ and}
\]

because of \(\sum_{i_1=1}^{q} i_j + \sum_{i_q=1}^{q} i_j = (q+q_1)(q+q_1+1)/2 \) we obtain

\[
\text{sign } D_1 = (-1)^{q+q_1(q_1+1)/2}. \text{ The sign } D_2 \text{ can be obtained using the same arguments.}
\]

\[
\text{Lemma 3.4. For the existence and the uniqueness of a formula } A(f, k, k', \sigma, \omega, \bar{c}, \bar{d}) = (c_0, c_1, c_2, \ldots, c_{m-1}), \bar{d} = (d_0, d_1, \ldots, d_{m_1-1}) \text{ of the form}
\]

\[
\frac{2n}{\sigma} \sum_{s=0}^{m-1} \frac{c_s}{\sigma^s} f^{(s)}(x) + \frac{2n}{\sigma} \sum_{j=0}^{m_1-1} \frac{d_j}{\sigma^j} f^{(j)}(x) dx - \int_{-\infty}^{\infty} f(x)dx.
\]
\[(3.3) \quad \frac{1}{\sigma} \sum_{s=0}^{m-1} \frac{c_s}{\sigma^s} \sum_{|\nu| \geq \omega + 1} f^{(k_s)}(\nu \sigma) \]

\[+ \sqrt{2\pi} \sum_{j=0}^{m_1-1} \frac{d_j}{\sigma^j} \sum_{|\nu| \geq \omega + 1} (-1)^\nu \hat{f}^{(k_j)}(\nu \sigma), \]

c, d are complex numbers, for some integer \(\omega \geq 0 \) and for every function \(f \in W^{k_s}_1 \) there are three possibilities:

1) If \(\omega < \omega + \omega - 1 \) then the formula of the form (3.3) is not unique.
2) If \(\omega > \omega + \omega - 1 \) then such formula does not exist.
3) If \(\omega = \omega + \omega - 1 \) according to \(\omega + \omega \) two subcases exist:
 a) if \(\omega + \omega \leq \omega + \omega - 1 \) then this formula is uniquely determined and for \(\hat{c} \) and \(\hat{d} \) we have the following:
 - \(c_0 + \epsilon(k_0) d_0 = 1 \), \(\epsilon(0) = 1 \), \(\epsilon(k_0) = 0 \) for \(k_0 > 0 \),
 - \(c_0 = 0 \) for \(k_0 \) odd and \(d_0 = 0 \) for \(d_0 \) odd,
 - \(c_s \) and \(d_j \) are real numbers for \(k_s \) and \(k_j \) even and they are uniquely determined by the system (3.11) for \(\omega = \omega + \omega - 1 \).
 b) if \(\omega + \omega > \omega + \omega - 1 \) then there are many formulae of the form (3.3) and for \(\hat{c} \) and \(\hat{d} \) of these formulae we have:
 - \(c_s \) for \(k_s \) even and \(d_j \) for \(k_j \) even are real and uniquely determined by the system (3.11),
 - a necessary and sufficient condition for \(c_s, d_j \) for \(k_s, k_j \) odd to be coefficients of the formula (3.3) is \(c_s \) and \(d_j \) for \(k_s, k_j \) odd to satisfy the systems (3.13) and (3.14).

Proof of Lemma 3.4. By Lemma 3.1 with \(a=0 \) and \(f^{(k_s)} \) for \(f \) one gets

\[(3.4) \quad \frac{2\pi}{\sigma} f^{(k_s)}(\nu \sigma) = \sqrt{2\pi} \sum_{\nu = -\omega}^\infty (\nu \sigma)^k s \hat{f}(\nu \sigma) + \sqrt{2\pi} \sum_{|\nu| \geq \omega + 1} \hat{f}^{(k_s)}(\nu \sigma). \]

By Lemma 3.1 with \(a=\frac{\pi}{\sigma} \) and \(f^{(k_j)} \) for \(f \) one gets

\[(3.5) \quad \frac{2\pi}{\sigma} f^{(k_j)}(\nu \sigma) = \sqrt{2\pi} \sum_{\nu = -\omega}^\infty (-1)^\nu (\nu \sigma)^k j \hat{f}(\nu \sigma) + \sqrt{2\pi} \sum_{|\nu| \geq \omega + 1} \hat{f}^{(k_j)}(\nu \sigma). \]

Multiplying (3.4) by \(c_s \) and (3.5) by \(d_j \) and summing them in \(s \) from 0 to \(m - 1 \) and in \(j \) from 0 to \(m_1 - 1 \) we obtain the formula

\[\frac{2\pi}{\sigma} \sum_{s=0}^{m-1} c_s f^{(k_s)} - \frac{2\pi}{\sigma} \sum_{j=0}^{m_1-1} d_j f^{(k_j)} = \sqrt{2\pi} \sum_{s=0}^{m-1} c_s \sum_{\nu = -\omega}^\infty (iv)^k s \hat{f}(\nu \sigma) \]
Quadrature Formulae for Entire Functions with 2-Periodic Data

\[+ \sqrt{2\pi} \sum_{j=0}^{m_1-1} d_j \sum_{v=-\omega}^\omega (-1)^v (iv)^k_j \hat{f}(\sigma v) + \sqrt{2\pi} \sum_{s=0}^{m-1} \frac{c_s}{\sigma_s} \sum_{|\omega+1|} \hat{f}(\omega) \]

(3.6)

By the formula (3.6) the following necessary and sufficient condition for the existence of \(A(f, \tilde{k}, \tilde{k}', \sigma, \omega, \tilde{c}, \tilde{d}) \) is obtained:

The equalities

\[\int_{-\infty}^{\infty} f(x) \, dx = \sqrt{2\pi} \sum_{s=0}^{m-1} c_s \sum_{v=-\omega}^\omega (iv)^k_s \hat{f}(\sigma v) + \sqrt{2\pi} \sum_{j=0}^{m_1-1} d_j \sum_{v=-\omega}^\omega (-1)^v (iv)^k_j \hat{f}(\sigma v) \]

(3.7)

\[= \sqrt{2\pi} \sum_{v=-\omega}^\omega \hat{f}(\sigma v) (\sum_{s=0}^{m-1} c_s (iv)^k_s + (-1)^v \sum_{j=0}^{m_1-1} d_j (iv)^k_j) \]

hold for every function \(f \in W_{1,1}^* BV \).

Since \(B_{\sigma(\omega+1),1} \subseteq W_{1,1}^* BV \) we can choose trial functions only from \(B_{\sigma(\omega+1),1} \) and this will be important for the next results. Let us choose the functions \(f_n(x) \) such that \(f_n \in C_0^n [(n-1)\sigma, (n+1)\sigma], f(n\sigma) \neq 0 \) and \(f = f_n \) for \(n = 0, \pm 1, \pm 2, \ldots, \pm \omega \). Because of \(f_n \in B_{\sigma(\omega+1),1} \) (by a modification of Paley-Wiener's theorem, (see [1]) after the substitutions \(f = f_n, n = 0, \pm 1, \pm 2, \ldots, \pm \omega \) we obtain the following necessary and sufficient condition for the existence of the formula \(A(f, \tilde{k}, \tilde{k}', \sigma, \omega, \tilde{c}, \tilde{d}) \):

The vectors \(\tilde{c} \) and \(\tilde{d} \) have to satisfy the system:

\[\begin{align*}
| & c_0 + c'(0)d_0 = 1 \\
& \sum_{s=0}^{m-1} c_s (iv)^k_s + (-1)^v \sum_{j=0}^{m_1-1} (iv)^k_j d_j = 0 \\
& v = \pm 1, \pm 2, \ldots, \pm \omega.
\end{align*} \]

(3.8)

\[\sigma(0) = 1, \sigma'(0) = 0 \text{ if } k_0 > 0. \]

Let \(c_s = c'_s + ic''_s, s = 0, 1, 2, \ldots, m-1 \) and \(d_j = d'_j + id''_j, j = 0, 1, 2, \ldots, m_1-1 \). Then the system (3.8) can be split to the following two systems:
\(c'_0 + \varepsilon(k'_0)d'_0 = 1 \)
\[\sum_{s=0}^{m-1} c'_s (-1)^{\frac{s}{2} + 1} v^s + \sum_{s=1}^{m-1} c''_s (-1)^{\frac{s}{2}} v^s \]
\[+ (-1)^v \sum_{j=0}^{m_1-1} d'_j (-1)^{\frac{j}{2}} v^{k'_j} + (-1)^v \sum_{j=0}^{m_1-1} d''_j (-1)^{\frac{j}{2}} v^{k''_j} = 0 \]
\[v = \pm 1, \pm 2, \pm 3, \ldots, \pm \omega \]

and
\(c''_0 + \varepsilon(k''_0)d''_0 = 0 \)
\[\sum_{s=0}^{m-1} c''_s (-1)^{\frac{s}{2} - 1} v^s + \sum_{s=1}^{m-1} c'_s (-1)^{\frac{s}{2}} v^s \]
\[+ (-1)^v \sum_{j=0}^{m_1-1} d''_j (-1)^{\frac{j}{2}} v^{k''_j} + (-1)^v \sum_{j=0}^{m_1-1} d'_j (-1)^{\frac{j}{2}} v^{k'_j} = 0 \]
\[v = \pm 1, \pm 2, \ldots, \pm \omega. \]

The systems (3.9) and (3.10) can be split into the following four systems which are the necessary and sufficient condition for the existence of the formula (3.3):

\[\sum_{s=0}^{m-1} c'_s (-1)^{\frac{s}{2}} v^s + (-1)^v \sum_{j=0}^{m_1-1} d'_j (-1)^{\frac{j}{2}} v^{k'_j} = 0 \]
\[v = 1, 2, \ldots, \omega \]

\[\sum_{s=0}^{m-1} c''_s (-1)^{\frac{s}{2}} v^s + (-1)^v \sum_{j=0}^{m_1-1} d''_j (-1)^{\frac{j}{2}} v^{k''_j} = 0 \]
\[v = 1, 2, \ldots, \omega \]
Quadrature Formulae for Entire Functions with 2-Periodic Data

\[\begin{align*}
\sum_{s=1}^{m-1} c'_s(-1)^{k_s/2} v^s &+ (-1)^{k'_s/2} \sum_{j=0}^{m-1} d''_j(-1)^{k'_j/2} v^j = 0 \\
\sum_{s=1}^{m-1} c''_s(-1)^{k_s/2} v^s &+ (-1)^{k'_s/2} \sum_{j=0}^{m-1} d''_j(-1)^{k'_j/2} v^j = 0
\end{align*} \tag{3.13, 3.14}
\]

\[v=1, 2, \ldots, \omega \]

The system (3.11) and (3.12) have the following matrix:

\[\begin{bmatrix}
1 & 0 & \cdots & 0 & \delta(k'_0) & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 & -1 & -1 & \cdots & -1 \\
1 & 2^{k_{12}} & \cdots & 2^{k_{1\omega e}} & 2^{k_{1'}1} & 2^{k_{1'}2} & \cdots & 2^{k_{1'}\omega e} \\
\vdots & \vdots \\
1 & \omega^{k_{12}} & \cdots & \omega^{k_{1\omega e}} & (-1)^0 \omega^{k'_{11}} & (-1)^0 \omega^{k'_{12}} & \cdots & (-1)^0 \omega^{k'_{1\omega e}}
\end{bmatrix} \tag{3.15}
\]

The systems (3.13) and (3.14) have the matrix:

\[\begin{bmatrix}
1 & 1 & \cdots & 1 & -1 & -1 & \cdots & -1 \\
2^{k_{11}} & 2^{k_{12}} & \cdots & 2^{k_{1\omega 0}} & 2^{k'_{11}} & 2^{k'_{12}} & \cdots & 2^{k'_{1\omega 0}} \\
3^{k_{11}} & 3^{k_{12}} & \cdots & 3^{k_{1\omega 0}} & -3^{k'_{11}} & -3^{k'_{12}} & \cdots & -3^{k'_{1\omega 0}} \\
\vdots & \vdots \\
\omega^{k_{11}} & \omega^{k_{12}} & \cdots & \omega^{k_{1\omega 0}} & (-1)^0 \omega^{k'_{11}} & (-1)^0 \omega^{k'_{12}} & \cdots & (-1)^0 \omega^{k'_{1\omega 0}}
\end{bmatrix} \tag{3.16}
\]

By Lemma 3.3 using the systems (3.11)—(3.14) we obtain 1) and 3). It remains to show that if \(\omega > \omega_e + \omega'_e - 1 \) the formula of the form (3.3) for every \(f \in W_k^1 BV \) does not exist. This follows easily because if \(\omega > \omega_e + \omega'_e - 1 \) then the system of equations (3.11) with \(v=1, 2, 3, \ldots, \omega_e + \omega'_e \) is a homogeneous system with \(\omega_e + \omega'_e \) unknowns and (by Lemma 3.3) whose determinant is non-zero. Hence \(c'_0 = \delta_0 = 0 \) which contradicts the first equation \(c'_0 + \delta(k'_0)d'_0 = 1 \). This ends the proof.
Corollary 3.1. If we are given \(\kappa, \kappa', \sigma > 0 \) then \(\max\{\omega : \omega \text{ integer}, \ A(f, \kappa, \kappa', \sigma, \\ \omega, \tilde{c}, \tilde{d}) \text{ exists for every } f \in W_{1}^{k^e} BV\} = \omega_{e} + \omega'_{e} - 1. \)

Remark 3.1. Lemma 3.4 gives the error estimate for the Q. F. of the form (2.3) in the space \(W_{1}^{k^e} BV. \)

4. Existence and uniqueness for Q. F. of HEDP

The solution of our problem will depend on the number of even integers in the vectors \(k, k' \) respectively \(\omega_{e} \) and \(\omega'_{e}. \)

Our main result is:

Theorem 4.1. A. Q. F. of the form (2.3) has HEDP equal to \((\omega_{e} + \omega'_{e})\sigma. \) More precisely, we have the following situation:
1) If \(\omega_{0} + \omega'_{0} \leq \omega_{e} + \omega'_{e} - 1 \) then a Q. F. of the form (2.3) of HEDP exists and is unique. The coefficients \(\tilde{c} \) and \(\tilde{d} \) are uniquely determined by the conditions:
 a) \(\tilde{c} \) and \(\tilde{d} \) are real vectors.
 b) \(c_{s} = d_{j} = 0 \) for \(k_{s}, k'_{j} \) odd.
 c) \(c_{s} \) and \(d_{j} \) for \(k_{s}, k'_{j} \) even are determined by the system:

\[
\begin{align*}
 c_{0} + \varepsilon(k_{0})d_{0} &= 1, \quad \varepsilon(0) = 1, \quad \varepsilon(k_{0}) = 0 \quad \text{for } k_{0} > 0 \\
 \sum_{s=1}^{m-1} c_{s}(-1)^{2} \nu^{s} + (-1)^{v} \sum_{j=0}^{m_{1}-1} d_{j}(-1)^{2} \nu^{j} &= 0 \\
 \varepsilon = 1, \quad 2, \quad 3, \ldots, \omega_{e} + \omega'_{e} - 1.
\end{align*}
\]

2) If \(\omega_{0} + \omega'_{0} > \omega_{e} + \omega'_{e} - 1 \) there are many Q. F. of HEDP of the form (2.3). The vectors \(\tilde{c} \) and \(\tilde{d} \) are coefficients of such Q. F. if they satisfy the following conditions:
 a) \(c_{s} \) and \(d_{j} \) for \(k_{s}, k'_{j} \) even are real and uniquely determined by the system (4.1).
 b) \(c_{s} \) and \(d_{j} \) for \(k_{s}, k'_{j} \) odd satisfy the systems (3.13), (3.14) for \(\omega_{e} = \omega_{e} + \omega'_{e} - 1. \)

Remark 4.1. It is easy to see that in the case 2) \(c_{s} = d_{j} = 0 \) for \(k_{s}, k'_{j} \) odd satisfy (3.13) and (3.14). The coefficients \(c_{s} \) and \(d_{j} \) for \(k_{s}, k'_{j} \) odd in the case 2) can be imaginary.

Corollary 4.1. If in the Q. F. (2.3) we are free to choose the \(m-1 \) numbers \(0 < k_{1} < k_{2} < k_{3} < \ldots < k_{m-1} \) and the \(m_{1} \) numbers \(0 \leq k_{0} < k'_{1} < k'_{2} < \ldots < k'_{m_{1}-1} \) then the Q. F. with HEDP is obtained when \(\omega_{e} = m \) and \(\omega'_{e} = m_{1}, \) and in this case HEDP is \((m + m_{1})\sigma. \) Thus all elements in \(k \) and \(k' \) have to be even.

Proof of Theorem 4.1. Let the Q. F. of the form (2.3) be precise for every \(f \in B_{0}(\omega_{e} + \omega'_{e}). \) Then for the given \(\kappa, \kappa', \sigma > 0, \tilde{c}, \tilde{d} \) by (3.6) and Paley-Wiener's theorem [1] the condition (3.7) holds for every \(f \in B_{0}(\omega_{e} + \omega'_{e}). \) and \(\omega = \omega_{e} + \omega'_{e} - 1. \) Thus \(\tilde{c} \) and \(\tilde{d} \) satisfy the systems (3.11)—(3.14) with \(\omega = \omega_{e} + \omega'_{e} - 1 \) and this is
a necessary and sufficient condition for the existence of $A(f, k, k', \sigma, \omega, \omega' - 1, c, d)$. Thus the systems (3.11)—(3.14) are a necessary and sufficient condition for the Q. F. to be precise for every $f \in B_{\sigma(\omega, \omega')}$.1.

Let us assume the Q. F. possesses EDP equal to $\sigma(\omega, \omega') + \gamma$, $\gamma > 0$. We choose the function f_σ with the following properties:

a) $f_\sigma \in B_{\sigma(\omega, \omega') + \delta, 1}$, $0 < \delta < \min(\gamma, \sigma)$.

b) $\hat{f}_\sigma(\sigma(\omega, \omega')) = -\hat{f}_\sigma(-\sigma(\omega, \omega')) \neq 0$.

But $f_\sigma \in W_1^{k_1} BV$ and by Lemma 3.4 the formula (3.3) is precise for f_σ, hence by Paley-Wiener's theorem we obtain:

$$0 = \frac{2\pi}{\sigma} \sum_{s=0}^{m-1} \frac{c_s}{\sigma^{s_2}} \int f^{(k_s)}_e \frac{2\pi}{\sigma} \sum_{j=0}^{m-1} \frac{d_j}{\sigma^{j_2}} \int f^{(k_j)}_e - \int_{-\infty}^{\infty} f_\sigma(x) dx$$

(4.2)

$$= \sqrt{2\pi} \sum_{s=0}^{m-1} \frac{c_s}{\sigma^{s_2}} [\hat{f}^{(k_s)}_\sigma(\sigma(\omega, \omega')) + \hat{f}^{(k_s)}_\sigma(-\sigma(\omega, \omega'))]$$

$$+ \sqrt{2\pi} \sum_{j=0}^{m-1} \frac{d_j}{\sigma^{j_2}} (-1)^e \omega^e \omega' \omega'^e [\hat{f}^{(k_j)}_\sigma(\sigma(\omega, \omega')) + \hat{f}^{(k_j)}_\sigma(-\sigma(\omega, \omega'))]$$

$$= 2\sqrt{2\pi} \int (\sigma(\omega, \omega')) (\sum_{s=0}^{m-1} \frac{c_s}{\omega_s + \omega'_s} k_s^2$$

$$+ \sum_{j=0}^{m-1} \frac{d_j}{\omega_j + \omega'_j} k_j^2$$

$$\nu = 1, 2, \ldots, \omega, \omega + \omega' - 1, \omega + \omega'.$$

From the last $\omega + \omega'$ equations and Lemma 3.3 follows $c_0 = d_0 = 0$ which contradicts the first equation $c_0 + \nu(k_0)d_0 = 1$. Hence the HEDP of the Q. F. of the form (2.3) is $(\omega + \omega')\sigma$.

The conditions 1), a), b), c) and 2), a), b) follow by the systems (3.11)—(3.14) and Lemma 3.3. This completes the proof.

5. Examples

Example 1. Let $k' = k$. Then $\omega = \omega_e$ and $\omega' = \omega_0$, $m_1 = m$. The system (4.1) can be written in the form:
\[
\begin{align*}
&\quad c_0 + d_0 = 1 \\
&\quad \sum_{s=0}^{m-1} (c_s - d_s)(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} \nu^{k_s} s = 0, \quad v = 1, 3, \ldots, 2\omega_e - 1 \\
&\quad \sum_{s=0}^{m-1} (c_s + d_s)(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} \nu^{k_s} s = 0, \quad v = 2, 4, \ldots, 2\omega_e - 2.
\end{align*}
\]

Let \(2\omega_0 \leq 2\omega_e - 1\). By Theorem 4.1 the Q. F. of the form (2.3) of HEDP equal to \(2\omega_e\sigma\) exists and is unique and \(c_s = d_s = 0\) for \(k_s\) odd. From the system (5.1) and Lemma 3.2 we obtain \(c_s = d_s\) for \(k_s\) even and the system (5.1) can be written in the form:

\[
\begin{align*}
&\quad c_0 = \frac{1}{2} \\
&\quad \sum_{s=0}^{m-1} (c_s - d_s)(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} \nu^{k_s} s = 0, \quad v = 2, 4, \ldots, 2\omega_e - 2.
\end{align*}
\]

The condition \(2\omega_0 \leq 2\omega_e - 1\) is equivalent to the condition \(\omega_0 \leq \omega_e - 1\). If we substitute \(2^{k_s + 1} c_s = b_s\) then the system (5.2) will be the system:

\[
\begin{align*}
&\quad b_0 = 1 \\
&\quad \sum_{s=0}^{m-1} b_s(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} \nu^{k_s} s = 0 \\
&\quad v = 1, 2, \ldots, \omega_e - 1
\end{align*}
\]

and the Q. F. of HEDP can be written in the form

\[
\frac{\pi}{\sigma} \sum_{s=0}^{m-1} b_s \left(f^{(k_s)}_{\sigma,\nu} + f^{(k_s)}_{\sigma,0} \right) \approx \int_{-\infty}^{\infty} f(x) dx
\]

and this is the result in [3]. In the paper [3] there are many examples which are particular cases of Example 1.

Example 2. Let \(p\) be even and \(k = (0, p, 2p, \ldots, (m-1)p), m_1 = m-1, k' = (p, 2p, \ldots, (m-1)p)\) thus \(k'_i = k_{i+1}, i = 0, 1, 2, \ldots, m-2; \omega_e = m, \omega'_e = m-1, \omega_0 = \omega'_0 = 0\). From Theorem 4.1 the Q. F. of HEDP \((2m-1)\sigma\) exists and is unique. The system 4.1 can be written in the form:

\[
\begin{align*}
&\quad c_0 = 1 \\
&\quad \sum_{s=1}^{m-1} (c_s + d_s)(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} (2v)^p + c_0 = 0, \\
&\quad \sum_{s=1}^{m-1} (c_s - d_s)(-1)^{\left\lfloor \frac{k_s}{2} \right\rfloor} (2v-1)^p + c_0 = 0, \\
&\quad v = 1, 2, 3, \ldots, m-1
\end{align*}
\]
because \(\omega_e + \omega'_e - 1 = 2m - 2 \). We will give a convenient way to compute the coefficients \((c_0, c_1, c_2, \ldots, c_{m-1})\) and \((d_1, d_2, \ldots, d_{m-1})\).

Let us consider the polynomials:

\[
(5.6) \quad p_e(x) = \prod_{s=1}^{m-1} \left(1 - \frac{x^p}{(2s)^p}\right) = 1 + \sum_{s=1}^{m-1} \frac{(-1)^s |p_{e,s}^{(sp)}(0)|}{(sp)!} x^{sp},
\]

\[
(5.7) \quad p_0(x) = \prod_{s=1}^{m-1} \left(1 - \frac{x^p}{(2s-1)^p}\right) = 1 + \sum_{s=1}^{m-1} \frac{(-1)^s |p_{0,s}^{(sp)}(0)|}{(sp)!} x^{sp}.
\]

By (5.5), (5.6) and (5.7) one may write the following equalities:

\[
(5.8) \quad (-1)^s \left(c_s + d_s\right) = (-1)^s \frac{|p_{e,s}^{(sp)}(0)|}{(sp)!}, \quad s = 1, 2, \ldots, m-1,
\]

\[
(-1)^s \left(c_s - d_s\right) = (-1)^s \frac{|p_{0,s}^{(sp)}(0)|}{(sp)!}, \quad s = 1, 2, \ldots, m-1.
\]

From (5.8) it is trivial to see that

\[
(5.9) \quad c_s = (-1)^{s(1 + p/2)} \frac{|p_{e,s}^{(sp)}(0)| + |p_{0,s}^{(sp)}(0)|}{2(sp)!}, \quad s = 1, 2, \ldots, m-1,
\]

\[
d_s = (-1)^{s(1 + p/2)} \frac{|p_{e,s}^{(sp)}(0)| - |p_{0,s}^{(sp)}(0)|}{2(sp)!}, \quad s = 1, 2, \ldots, m-1.
\]

For \(m = 2 \) by (5.9) one gets:

\[
c_1 = (-1)^{1 + p/2} \frac{1}{2} \left(\frac{1}{2^p} + 1 \right), \quad d_1 = (-1)^{1 + p/2} \frac{1}{2} \left(\frac{1}{2^p} - 1 \right)
\]

and the Q. F. of HEDP = 3\(\sigma \) will be the following:

\[
\int_{-\infty}^{\infty} f(x)dx \approx \frac{2\pi}{\sigma} \left(\frac{d_{e,0}}{2^p} + \frac{(-1)^{1 + p/2} \frac{1}{2} \left(\frac{1}{2^p} + 1 \right) f_{e,0}^{(p)}}{2^p} + \frac{(-1)^{1 + p/2} \frac{1}{2} \left(\frac{1}{2^p} - 1 \right) f_{0,0}^{(p)}}{2^p} \right).
\]

\[
\text{Example 3. Let } p \text{ be even number, } \tilde{k} = (0, p, 2p, \ldots, (m-1)p), \tilde{m} = m, \tilde{k} = (p, 2p, 3p, \ldots, (m-1)p), \tilde{m} = m, \omega_e = \omega'_e = m, \omega_0 = \omega'_0 = 0 \text{ and by Theorem 4.1 the Q. F. of HEDP equals to } 2m\sigma \text{ exists and is unique. We will give a way to compute the coefficients } (c_0, c_1, c_2, \ldots, c_{m-1}), (d_1, d_2, d_3, \ldots, d_m). \text{ The system (4.1) can be written in the form (} \omega_e + \omega'_e - 1 = 2m - 1)\):
\]

\[
(5.11) \quad \begin{array}{l}
c_0 = 1 \\
\sum_{s=1}^{m-1} (c_s + d_s) (-1)^{s/2} (2v)^{sp} + d_m (-1)^{m/2} (2v)^{mp} + c_0 = 0 \\
\end{array}
\]

\[
v = 1, 2, \ldots, m-1.
\]
\[
\begin{align*}
\sum_{s=1}^{m-1} (c_s - d_s) \left(-1 \right)^{\frac{sp}{2}} (2v-1)^{sp} - d_m \left(-1 \right)^{\frac{mp}{2}} (2v-1)^{mp} + c_0 = 0 \\
\nu = 1, 2, \ldots, m-1, m
\end{align*}
\]

Let us consider the polynomials:

\[
\Pi_0(x) = \prod_{s=1}^{m} \left(1 - \frac{x^p}{(2s-1)^p} \right) = 1 + \sum_{s=1}^{m} (-1)^s \frac{\left| \Pi^{(sp)}_0(0) \right|}{(sp)!} x^{sp},
\]

\[
(5.12)
\]

\[
r_e(x) = \prod_{s=1}^{m-1} \left(1 - \frac{x^p}{(2s)^p} \right),
\]

\[
\Pi_e(x) = r_e(x) \prod_{s=1}^{m-1} \left(1 + \frac{x^p}{(2s-2)^p} \right) \frac{\left| \Pi^{(sp)}_e(0) \right|}{(sp)!} x^{sp} + d_m \left(-1 \right)^{\frac{mp}{2}} x^{mp}.
\]

It's easy to see \(\Pi_0(2v-1) = 0, \nu = 1, 2, \ldots, m \) and \(\Pi_e(2v) = 0, \nu = 1, 2, \ldots, m-1 \). From (5.11) and (5.12) one may write the following expressions for \(\vec{c} \) and \(\vec{d} \):

\[
d_m = (-1)^{m-1} mp/2 \frac{|\Pi^{(mp)}_0(0)|}{(mp)!},
\]

\[
c_s + d_s = (-1)^{s+1/2} \frac{|r^{(sp)}_e(0)|}{(sp)!} - \frac{|r^{(s-1)p)}_e(0)|}{(s-1)p)!} \frac{(2m-2)!}{(2m-1)!},
\]

\[
(5.13)
\]

\[
s = 1, 2, \ldots, m-1
\]

\[
c_s - d_s = (-1)^{s+1/2} \frac{|\Pi^{(sp)}_e(0)|}{(sp)!}, \quad s = 1, 2, \ldots, m-1.
\]

Let us take the case \(m = 2, \vec{k} = (0, p), \vec{k}' = (p, 2p) \). Then

\[
\Pi_0(x) = (1 - x^p)(1 - \frac{x^p}{3^p}) = 1 - (1 + \frac{1}{3^p})x^p + \frac{1}{3^p}x^{2p} \quad \text{and} \quad r_e(x) = 1 - \frac{x^p}{2^p}.
\]

For the coefficients we obtain by (5.13):

\[
d_2 = (-1)^{p+1} \frac{1}{3^p}, \quad c_1 + d_1 = (-1)^{1+p/2} \frac{1}{2^p} - \frac{2}{3^p},
\]

\[
(5.14)
\]

\[
c_1 - d_1 = (-1)^{1+p/2} (1 + \frac{1}{3^p}).
\]

Hence for \((c_0, c_1) \) and \((d_1, d_2) \) one may write the following:

\[
c_0 = 1, \quad c_1 = (-1)^{1+p/2} \frac{1}{2} (1 + \frac{1}{2^p} + \frac{1}{3^p} - \frac{2}{3^p}),
\]
Quadrature Formulae for Entire Functions with 2-Periodic Data

\[d_1 = (-1)^{\frac{1}{2}} \left(\frac{1}{2} - 1 - \frac{1}{3} - \frac{2}{3} \right), \quad d_2 = (-1)^{p+1} \frac{1}{3} \]

For \(p = 2 \) we will obtain
\[c_0 = 1, \quad c_1 = \frac{11}{24}, \quad d_1 = -\frac{47}{72}, \quad d_2 = -\frac{1}{9} \]
and the Q. F. of HEDP 4σ will be

\[\int_{-\infty}^{\infty} f(x)dx \approx \frac{2\pi}{\sigma} (f_{\sigma,\sigma} + \frac{11}{24\sigma^2} f_{\sigma,\sigma}^{(2)} - \frac{47}{72\sigma^4} f_{\sigma,\sigma}^{(2)}) - \frac{1}{9\sigma^4} f_{\sigma,\sigma}^{(4)}. \]

\[\text{Example 4. Let } m = 1, \quad k = (0), \quad k' = (21), \quad \omega = \omega' = 1, \quad \omega_0 = \omega'_0 = 0. \]

Then by using Example 3. for \(m = 1 \) or the system (4.1) we obtain for the coefficients \(c_0 \) and \(d_0 \):

\[c_0 - d_0 (-1)^{1} = 0, \quad 1 \geq 1 \]

and the Q. F. of HEDP equal 2σ will be the following:

\[\int_{-\infty}^{\infty} f(x)dx \approx \frac{2\pi}{\sigma} (f_{\sigma,\sigma} + \frac{(-1)^{1}}{\sigma^{21}} f_{\sigma,\sigma}^{(2)}). \]

References