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1. Statement of the problem

Let (Q, 4, P) be a probability space. Let W=(W(t), t€[0, o0)) be a standard
one-dimensional Wiener process and £ —an independent of W non-negative
random variable in (Q, &, P).

Definition 1. The diffusion process Y=(Y(t), te[0, o0)), defined by the
equation:

Y(t)=b+ut+ W(t), te[0, o), beR, ueR,
is said to be a Wiener process with initial state b and linear drift with parameter u.

Definition 2. The random .process Z=(Z (), te[0, o©0)), defined by the
equation: ;

Zt)=b+u.t—&).1{E<t}+W(t), te[0, ), b, nueR, is said to be a Wiener
process with initial state b, which acquires a linear drift with parameter u at a
moment of time &.

Let the process W acquires a linear drift with parameter u, >0, at a random
moment of time &. If no external interventions be realized, as a result we will get
the random process X =(X (t), te[0, o)), X ()= W (t)+u.(t— &) I {& <t}, which be
considered up to its first reaching a fixed level A. Here A is a positive real number,
.and I {-} is an indicator of the set { - }. If we introduce an external intervention
before the process X reaches the level A4, for example, if we eliminate the drift
appeared, then the process X and the moment of first reaching of level A will
change.

Our purpose is to find a rule to control the process by correcting it (by means
of external interventions) so as to maximize the average time until the process
reaches the level A.

At first we need some definitions and clarifications. Let b be a real
non-negative number, and W?=(W?*(t), te[0, «0)) be an one-dimensional Wiener
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process with an absorbing screen in the state b (c.f. [2], § 11). We define the
following moments of first reaching the level b:

t(b)=inf{t=0: W(t)=b};
v (b, H=inf{t=0: W' ()=b, W’ (t)=W"*(&)+W(®)+nut};
T(b, &=inf{t=0: W(t)+pu.(t—&)I{E<t}=b}.

Since W is a Markov process and £ is an independent of W random variable,
we have:

T, &)=1(b).I{sup W(t)=b}+(&+7'(b, &)).I{sup W(t)<b};
o0sts¢ 0sts¢

(1 T, H=1b).I{rb)<E}+(E+7'(b, &).I{(b)>¢}.

Definition 3. Let b be a real number, be[0, 4), and T (b, ) be the moment of
first reaching the level b by the random process X. Control by an external
intervention of type (A) of the process X (or control by means of an external
intervention of type (A4) of the process X) is said to be the following act:

1) When the process X reaches the level b, i. e. at the moment T (b, &), the
drift of the process is eliminated (provided the drift is appeared);

2) Then the process behaves as a Wiener process with initial state b and it
can acquire a linear drift with parameter u after a random time interval &,
beginning from the moment T (b, £). The random variable ¢’ is independent of the
behavior of the process discussed and of the random variable £. Thus, after the
moment T (b, £) a new random process X'=(X'(t), te[0, 0)), X'(t)=b+ W(t)
+u.(t—¢&)I{& <t} holds. _

The level b is said to be an level of external intervention, or briefly, an
intervention level.

Remark. The control of the process X by one external intervention of type
(A) is determined by choosing of a value of the intervention level b.

Consider the case when n—1 interventions of type (A4) are assumed to be
realized. Let b;, i=1,...,n—1, be the intervention levels. Clearly, the intervention
levels form a nondecreasing sequence: 0<b, <b,< ... <b,_; <A. Denote by ¢,
the random moment of time at which the discussed process can acquire a drift if
no interventions are realized and by &, ; — the length of the random time interval
after which expiry the process can acquire a drift after i-th intervention, i=1,
2,...,n—1. Consider the processes: X;=(X;(t), te[0, ), X,;(t)=b;—, + W (t)
+u@—E)I{¢<t}, i=1,...,n, by=0. Let X"=(X"(t), te[0, o0)) be the process
having control by n—1 interventions of type (A4). Before realization of the first
intervention the behavior of X" is described by the random process X,. At the
moment of first reaching of the level b the drift of the process is eliminated
(provided the drift is appeared). Then the controlled process is represented as
a process X, which is a Wiener process with initial state b, and can acquire
a linear drift with parameter u after random time interval £,, beginning from the
moment T (b,, &,). The random variable £, is independent of the behaviour of the
process discussed and of the random variable £,. Then, at the moment of first
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reaching of the level b, the drift of the process is eliminated again (provided the

drift is appeared) and the process keeps on behaving in the described manner as

long as the random process X" reaches a beforehand fixed level A.
Introduce the designations: a,=b,, a,=b,—b,,..., a=b,—by_,,...,

a,=A—b,_,. Then the controlled process X" can be represented in the form:

n i—1 * i—-1 i
X")=X X, t— X I(a;, &).I{Z Ty E)=<t< T T(ay, &)}
= ji=1 ji=1

i=1 J=1

o
where ¥ T(a;, £)=0.

Jji=1
Remark that the moment of first reaching of level A by the random process
X" is £}-, T(a;, &) because of the strong Markov property of the Wiener process

. £ [1], § 1.6).

Definition 4. Control of the process X by means of n—1 external
interventions of type (A) is determined by choosing of values of the intervention
levels b,, b,,...,b,—; to satisfy the conditions: 0<b,<b,<... Sb,-;<A.

Definition 5. Optimal control by means of at most n—1 external
interventions of type (A) is said to be a control maximizing the average time for
first reaching of level A by the controlled process.

2. General form of the dptimal control problem of Wiener process
by external interventions of type (A)

In order to realize an optimal control ofa random process X by means of
external interventions of type (A) it is necessary to determine the number and
concrete values of the intervention levels to maximize the average time for which
the controlled process reaches the level A. We assume that at most n—1
interventions, n=>1, can be realized. Because of the intrinsic restriction that the
intervention levels b,, b,,...,b,—, form a nondecreasing sequence it is sufficient
to determine the distances a;=b;,—b;_y, i=1,...,n, b,=A, by=0, among them.

Let n=>1 be a fixed integer number. The problem of optimal control of
Wiener process by realizing no more than n— 1 external interventions of type (4),
can be defined in the following way:

Problem (A). Determine the numbers a,, a,,...,4, so that
n

) min E(— £ T(a;, ¢&))is reached under the restrictions:
i=1

n
3) X a=A; a=20, i=1,...,n
i=1
The relation between the numbers a,, a,,...,a, and the intervention levels
b,, b,,...,b,—y is obviously:
b=a,+a,+ ... +a;, i=1, 2,...,n—1. Remark in addition that the last
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intervention level can not coincide with the level A. It means that the optimal
number of interventions of type (A4) for optimal control by at most n—1
interventions is possible to be less than preassigned number of interventions.
Obviously, it will be less by one than the subscript of the last non-zero g; in
sequence of optimal values of numbers a,, a,,...,a,.

If we define m=sup {i:q;#0, i=1,...,n}, then the optimal number of
interventions will be m—1, m<n. Denote by M (n, A4) the set of all sequences {a;},
i>1, which satisfy the conditions: X!_, a;=4; ;=0 for i=1,...,n and a,=0 for
i>n. Denote by

Fn)= max {E(Z T(a;, &)}, n=1.
(ai}clnEM(n, A) i=1
Since F(n+1)= max {E(Z!2! T(a;, &)} =F (n), the sequence {F(n)}, n=1,
{0}y M A) :

is non-decreasing.‘bbviously, the optimal number of interventions (m— 1) depends
on the preassigned number of interventions. In general case m will increase with
n but m<n for every n=1.

Further we find the form of the object function and prove that under some
conditions the Problem (A4) is a convex optimization problem which has an

unique solution.
Since ET (b, &)= EE (T(b, &)/£), we determine E (T (b, £)/{) at first and then we
determine ET (b, &) by randomization according the given distribution of &.

- Theorem 1. The conditional expectation E (T (b, £)/&) of the moment of first
reaching T (b, &) of level b by a standard one-dimensional Wiener process, which
acquire a linear drift with parameter pu at random moment &, independent of the
behavior of the process, has the form:with probability 1):

@  E(T(, &/&)=—b*erfc(b/\/28)+b/2¢/n exp(—b*/(28)
+ Eerf(b//28)+b/p.
Proof. It follows from (1) that
E(T®, &/8)=E@®).1{z(0)<EO+EEI{z(b)>E}d)
+E(@ (b, &).1{z(b)>&}/).

The probability density of the random variable z (b) is known (cf.[1], § 1.7 or
[2], § 26):

fuay ()=b/</2nt® .exp (—b*/(2t)).

Using well-known formulae of the integral calculus techniques (cf.[4], ch. 1,
§ 1.3, ch. 2, § 2.3 and [3], ch. 7), we get:

EG(®). I{:(0)SE19=b//2% | 17 exp (~b/(2)dt
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2/n ?_ x~2exp(—b?x2/2)dx.

1/3/¢
(5) E@®).1{t(®)<SE} 8= —b*+by/2¢/m.exp(—b*/(28))+b? erf(b//2%)
6) E¢E.I1{z(b)>¢}|&)= EP(z(b)> &) =CEerf(b/4/20).

The random variable 7' (b, £).I {t(b)>¢} can be considered as a moment of
first reaching of the level b by the random process W?(&)+ W(t)+ ut. Therefore,
the following relations are fulfilled:

I{z(0)> &} =1{W" () <b};

P(Z (b, §=0)=P(W?(©)=b)=P(x(b)<&=erfc(b/r/20);
E@ (b, §.I{t(0)>IH=E( (b, &);

E@®, &).1{z(0)>¢&} | O=E{E[7 (b, O/W*() f]lé}

The probability density of the random variable 7’ (b, {) under the condition
Wb (£)=u has the form (cf. [2], § 26):

Sl ==t exp(~—u—p QN2 530, ue(—co, )
P(T’(b, f):OIWb(é)=u’ §)={l, u=b;

0, u<b.
Then we have:
+ o0

E(@'(b, OIWP (&) =u, &)= [ sf(sluyds=(b—u)lp, wue(—co, b].
o

The probability density of the random variable W?t(¢) is given by the
expression (cf. [5]):

g (w)=[exp (—u?/(28) —exp (—(2b—w)*/(28))/r/ 27, ue(—oo, b);

P(W*(§)=b)=P(zx ()< &) =erfc(b/,/2%).
We obtain:

E@ (b, OIO=Eb—W"(Q) /]
b
= _5 (b— u) [exp (—u?/(28)) —exp (— (2b—w)*/(2EN [/ 2n& p) du.
After some not complicatéd calculations using the integral calculus
techniques (cf. [4], ch. 1, § 1.3, ch. 2, § 2.3), we get:

) E@@ (). 1{z(b)>¢}1&)=b|p
It follows from (5), (6) and (7) that (4) is true. The proof is completed.

Corollary. Let &,, &, ,..., &, be the non-negative, independent random variables
with E\/E< 00, i=1,...,n. Then the Problem (A) is a convex optimization problem
with unique solution. I ts object function has the following form:
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(8) . E(— ;J T(a;, &))=— i j'w G;(x)dF;(x),

i=1 i=1 O
where G,(x)=E(T(a;, £)|&{,=x) is given by the expression:

G, (x)= —a? erfc(a;//2x)+ a;/2x/n exp (—a?/(2x)) + x erf(a;//2X) +a, /1
and F;(x) is the distribution function of the random variable &, i=1,...,n.

Proof The representation (8) is obviously clear. The form of G;(x),
i=1,...,n, follows from the representation (4). Moreover, we have

+ o 5
| 1G;(x)|dF;(x)<co for every i=1,...,n
o

because of the following inequalities:
+ o
[ VydF(y)<wo;
(1]

erfc(a; /</2x) § 1;
x.erf(a;/\/2x)<a;/2x/n (cf. [3], ch. 7, 7.1.6), which hold for every x€(0, o0)

and i=1,...,n.
Using results from [3], Ch. 7, we obtain:

dG,(x)/da;= —2a;.erfc(a,/</2x)+2./2x/n .exp (—a? /(%) + 1/p;

d2G;(x)/d? a;= —2.erfc(a;//2X) <O for every x€(0, o) and for every a;€[0, 4],
i=1,...,n . :
Moreover, we have
+ + oo
I |dG;(x)/da;|dF;(x)< oo, I |d2 G;(x)/d? a;| dF;(x) < co.

V] /]
Let us denote by C the matrix

{0%[— i ET(a, &J)/(@a; da)}, i, j=1,...,n. We have:
k=1
Pl- T ET(@, Ea=— | [&*G,(/da)dF,(x)>0,
[}

k=1
for every a;e[0, A), i=1,...,n; and

[— Z ET(a, EN(@a;, 0a)=0, i#j,
k=1
for every i, j=1,...,n. Therefore, according to the Silvester criterion (see [7],

§ 13.6), the quadratic form y’ Cy, yeR", is a positive definite one for every vector
(ay, a,,...,a,) with components a,e[0, 4], i=1,...,n. As a consequence we have
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that the object function E(—X}-; T(a,, &) is a strictly convex function on the
domain defined by the conditions (3) (see [6], § 6.2). As the domain defined by the
conditions (3) is also convex, Problem (A) is a convex optimization problem with
unique solution.

The proof is completed.

3. Solution of the optimal control problem m case of exponentially
distributed moments of acquiring a drift

Let the random variables &; be exponentially distributed with _parameters
4;>0, i=1, 2,...,n. In this case the exphclt form of ET (b, E) is given by the
following statement

Theorem 2. The mathematical expectation ET (b, &) of the moment of first
reaching T (b, &) of level b by a standard one-dimensional Wiener process, which
acquires a linear drift with parameter p after random time interval £, where & is an
independent of the behavior of the process and exponentially distributed with
parameters A>0 random variable, has the form: :

©) ET(b, &)=1/A (1—exp(—by/21))+b/p.

Proof. The representation (9) is obtained from (4) after some not
complicated calculations applying the formula for the total mathematical
expectation, i. e. by randomization with respect to &.

Theorem 3. Optimal control by means of at most n— 1 external interventions of
type (A) in the behavior of the Wiener process, which acquires a linear drift with
parameter u after a random time interval exponentially distributed, is realized by
a choice of intervention levels b, in the form:

b;=a,+a,+... +a;, i=1, 2,...,m—1,

where m—1, m<n, is the optimal number of interventions which should be
accomplished. The values of a and m are determined by the following algorithm:

1) The parameters A, i=1, 2,...,n, are q[ranged in a non-decreasing
sequence: 1, s}l, S...Shs. 54 Substitute =4, d;=a,;

2) The sumsS =X}, l/(2,/22.)ln().,//1_,), i=1,...,n, are formed and an index
k is defined by the relation: k=max {i=1,...,n: S,<A}
3) Put ay=a,, i=1,...,n, where:

k A k
di=(A— T 1/2/22) A/ Z JA4/A), 1=5isk
ji=1 ji=1
a@,=0 for k<i=n when k<n;

4) The optimal number of interventions is (m— 1) where m is determined by the
expression: m=max {i=1,...,n:a;#0}.
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Proof. We show that the Problem (A4) is a convex optimization problem
with respect to arbitrary distribution of non-negative random variables £; with

E \/_ ¢ <o0,i=1,2,...,n. When ¢, are exponentially distributed random variables
with parameter A; correspondmgly, the condition (2) has the form:

(10) min (— 3:1 [(1 —exp(—a;+/22))/ 3, +a, /D).

The Problem (10) under the restrictions (3) can be solved by using the
Kuhn-Tucker theorem (c. f. [6], § 7). In the case considered the Kuhn-Tucker local
conditions have the form:

(11) V2/A;.exp(—a;/24)=Sv, i=1, 2,...,m;

(12) T a=A

i=1

(13) v>0; a;20, i=1, 2,...,n;

(14) a;[\/2/4;.exp(—a;/24)—v]=0, i=1, 2,...,n

Arrange the parameters A i=1, 2,...,n, in a non-decreasing sequence:
/1, sAHh<...S4=...5/ and put 1= As a,—a, It follows from (14) that if for
some g?iven i=1, 2 ,nwe have \/2/1,<v then for the same i we lmpl a;=0. Let
the integer k be deﬁned by the relation: k=max{i=1, 2,. 2/A;>v},
1=<k=n.If k<n we have G;,=0 for every i>k, i<n; if i<k the inequahty J2/A,>v
holds and (11) implies that §,>0. It follows from (14) that for every i<k we get

V2/A;.exp(—a;/2A4)=v, ie.:
(15) a=—In(v\/7,/2)/\/2%,

The condition (12) implies:
k - k
(16) lny=—{4+ % [in (/1;/2)]/(2\/57;)}/( z 14/2).

The inequality ./2/).,>v is equivalent to the mequahty In(\/2/A)>1nv.
Taking into account (16), we obtain:

A> >: 1/24/2%) In (3,/7).
i=1

Referring to part 2) of Theorem 3 we form the sums S;. The sequence {S,},
i=1, 2,...,n, is increasing, so that the index k can be determined also by the
following way: k=max {i=1,...,n:S;<A}. -

The statement in the part 3) of Theorem 3 follows from (15) and (16).

The optimal number of interventions for preassigned n is determined by the
requirement that the last intervention level has not to coincide with the level A.

The proof is completed.
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4. Some special cases

Let the random variables £; be exponentially distributed with parameters
4;>0, i=1, 2,... . We shall consider some special cases, in which the average
times for acquiring a drift by the controlled process after each intervention form
an non-decreasing sequence, i. €. we suppose 4;<4;, for every i=1. Under this
requirement the sums S defined in part 2) of Theorem 3 do not depend on
preassigned maximal number (n— 1) interventions. Then for every n=>1 they have
the form:

S,= x 1/2/24) In (A/4), i=1, 2,...
j=1

Obviously, the sums S;, i=1, form an increasing sequence. Define
S=lim,.,S,, 0<S=<o00. According to Theorem 3 the relations between S and
A determine the form of the optimal solution.

Special case 1. Let 4,=A4 for every i=1. In this case we have S=0. The
solution of Problem (A) is the following: a,= A/n, 1 <i<n. The optimal number of
interventions coincides with the preassigned maximal number interventions, i. e.
m=n. The sequence {F(n)}, n=1, is strictly increasing and F (n) has the form:

F(n)=n/A(1 —exp(—A/24/n))+ A/p.
Special case 2. Let S<A. Thus, S;<A for every i=1. Therefore, the
optimal number of interventions coincides with the preassigned maximal number
of interventions, i. . m=n and one has:

a=(A— % 1/(2\/27,)1n(1,/1,»/(j§ JATA), 1sisn.
j=1 .

In this case the sequence {F (n)}, n=1, is strictly increasing in addition to
Case 1.

Special case 3. Let S>A. Define k=max {i=1:5;,<A}. As §;=0<A4 so
k < co. Thus, for n <k the optimal number of interventions is m—1=n—1, and for
n2=k one has m=k. In this case the members of the sequence {F (n)}, n> 1, satisfy
the relations: F(n)<F(n+1) for n<k and F(n)=F(n+1) for n=k.

Special case 4. Let S=A. If S;<A for every i=1 we have the same
situation as in the Case 2. Since the sequence {S,}, i= 1, is increasing and S, =0, if
i> 1 with S;= A exists, then the results in Case 4 coincides with that in the Case 3.
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