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1. Introduction

Let T=dT,, denote the standard simplex in R%, d=>1: T={xeR?:x20,|x| <1},
when |x|= Z x;. Then for any multi-index i=(i,,...,is+1), We denote by p; :=p{

i1 :
the Bernstein basis polynominal on T:

li]!
pi()=~r(x, 1—|x|)), xeT.
Above we have used the usual notation
Iil=i1+ oo +i‘+1, i!=i1 !'~'id+l !,
(x, 1—|x])=x4...x@8(1—|x|)la+1.

In[7]J. L. Durrmeyer defines for n>0, the operator M, from the space of
inegrable functions on T to the space IT, of polynomials of total degree at most n
on T by

n+d)!
(L) (M0 =My, 0= = 200§ oD p(010)t, xeT.
lil=n T )
This operator has been studied by M. M. Derriennic [4], [5], Z. Ditzian and
K. Ivanov [6] and others.

Here we shall define a related but essentially different operator U, from the
space C(T) of continuous function on T to II,. To define this, it will be convenient
to consider certain simplex splines (or multivariate B-splines) (see [10]). For any
multi-index i=(i,..., ig+1), we denote by Bj(x) the simplex spline on R? with
knots at the points given by the vectors e, =(1, 0,..., 0), ¢,=(0, 1, 0,...,0),...,
e,=(0, 0,..., 0, 1) and the origin with multiplicities iy,...,ig+1 res#)ectively.

For simplicity and to preserve symmetry with respect to the faces of the
simplex, we shall use the convention that

(1.2) If(tls"'9td+l)dt1"‘dtd+l= jf(tl""’td’ l‘-t‘—tz-.- —td)dtl ...dtd.
Tq Tq
Then B(x) is the distribution defined by
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d i, '
(1.3) I B,(x)f(x)dx=(li'—1)! I f( z e, )] t“l+"'+‘v—1)+j)dtl"'dtm'
d Ty_y v=1 J=1

We then define for n21,

1.4 (U UX) :=(Up, afXx)
= I p(x) _‘;B,(t)f(t)dt xeT.
lil=n R

To see the connection between (1.1) and (1.3), we recall ([10], Corollary 2),
that

15 . L
(1.5) p'(x)-(_lil-i-_d)—! i1

where 1 denotes the multi-index (1,...,1).

We also note that if i;=0, then the support of B;(x) lies in the set {x :x;=0} if
1<j<d, and in the set {x X+ ... +x4=1} if j=d+1. In such cases, we can
regard B; as a distribution on R‘"!. Applying (1.5), we can then express U,f
directly in terms of Bernstein basis polynomials. As examples we have

n—1 1

(1.6)  (Un,1/XX) :=f(0)po,»(x)+ Z Pa,.-:(X)g(n—l)p;-n..—a-x(t)f(t)dt

i=1
+f(1)pa, 0(x), 0=x=1.
(1.7) (U, 20X%, ¥) :=f(0, O)po, 0, (%, y)+f(1, O)P4, 0,0(x, ¥)
+f(01 l)P.o.u. 0(x’ Y)
n—1

, 1
+ po.i.u-—I(-x! y)g("_l)Pi—l.n—l—l(t)f(os t)dt
i=1

n—1 1
+ Z pi.o.n—l(x’ y)g(n—l)pi-l.n—l—l(t)f(t’ O)dt

i=1
n—1 1

+ Z pin-i,0(x }’)I(n-l)pl—l.n—l—l(t)f(t’ 1—-¢)dt
i=1 )

+ o B Puaas Y) [ = 1n—2)pioy j-1,k-1 (4 0)f(, v)dudo.
Likz1 T2
The operator U, shares, in some sense, the advantages of both the operators M,
and the Bernstein operator B,. Like M,, U, has the commutative property, i.e.,
U, U, =U,U, Moreover, U, has a basis of eigenfunctions in I1,, m<n which is
independent of n and can be represented explicitly. These properties, together with
other basic properties are shown in Section2. Like the Bernstein operator, U,
reproduces linear functions and U, f interpolates f at the vertices of T. That U,
shares all the shape-preserving properties of B, is shown in Section3. It is
well-known that the rate of convergence of the Bernstein operator is slow, and one
of its main advantages, therefore, lies in its shape preserving properties. Thus it is
interesting to observe that these properties are shared by U,. Finally in Section 4,
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we show some convergence properties of U,. Without going into a detailed
analysis of convergence, we show that U, shares with B, the elegant form of
asymptotic estimate due to Voronoskaya, and if any derivative D* f of f is
continuous, then D*U,f converges uniformly on T to D°f

The operator U, , is a special case of a spline operator considered in [8]. It is
easily seen that (U, ,f)=M,_, .(f) and hence some properties of U, ,, like
commutativity, can be easily deduced from the corresponding properties of M,, ;.
However, for d=2 there is no such simple relationship between U, 4 and M, 4.

2. Basic properties

Clearly we have

2.1) U, is linear and positive,
2.2) (U Nx)=f(x) if x is any vertex of T,
23) I1Unfllo SISl fECT).

Theorem 1. If for some r<d—1, fe C(T,) is essentially a function only of r
variables, i.e.,

S(Xg5eeesXg)=9(%45...,X,),
then
Un af (X15---sX)=Up, 19(x1,-..,X,), XET,.

Proof. It is easily seen from (1.3) that
(2.4) _LB;I...',"_‘_l(x)f(x)dx: I'B,-l....';'.(,ﬂ_l.,....+;‘+1)(x)g(x)dx.
R R

We also note that for fixed j=(j,---5 J,)

. Piyetgny®

! xd Jr —liD!
L o —— (n, b e g (1= [+t
i!(n—1iD! ipaq o Higg g =n—ti bvgieeclasr: :
=pL,,_m(x1,...,x,).
So from (1.4) and (2.4) we obtain ’

(Un. JXX)‘—" )] pl(X)IBgl_ iy ..-i'(t)g(t) dt

fij=n
= I (B, jmu®o®dt P
man (igsemrip)=}
=X pj.n—ﬂl(xl’--',xr)IBj_,._m(t)g(t)dt
lisn ‘

w U, s @(%gysesXe) ]
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By symmetry it follows from Theorem 1 that if for r <d — 1, fe C(T,) satisfies
S5 s Xg)=9(XyseeesXp—1, 1 =X — ... —X4), XET,,
then '
Unaf(X15---3%)=Up ,9(xy5.ccsXp—yy, 1=%;— ... —Xx,4), X€T,.

The following result shows, in particular, that U, reproduces linear functions and
preserves the degree of the polynomials in IT, with respect to each variable
(coordinatewise). Henceforward we adopt the convention that negative factorials
are omitted except when (—1)!/(—1)!=1.

Theorem 2. If f(x)=x°, xeT,, acZ%, then

s(n—1)lal s n! a—1
=9 (U"-‘m")‘(n—1+|a|)!f, i!(n—lil)!( i—1 )""

where
— —_ | a a a a
(‘,l 1)::_——(2——!)—'—;—and z = Zl 22 I.Z' .
=1 i—1)!(a—i)! i=0 ;=0 i,=0 i4=0
Proof. If f(x)=x% then by (1.3), we have
(2.6) f Sx)B(x)dx=(li|—1)! | wvede,...de,,
ad N
where

i i

1 2 14
v :=(vl,...,vd)=( ))) tj, p)) t‘l+j"”’ ) t“l+...+i‘_l)+j).
i=1 ji=1 ji=1

In the integral on the right in (2.5), we rpplace the variables t,, t; 4+,,...
tiy+---+ig_p+1 DY Uy,..., v, and integrate with respect to the other variables.

Then
[ vede,...dty = [ veF(v)dv,...dv,,
Tq

T
-1
where F(v) is the product of the volumes of the following simplices:

UIT‘I_I, va‘Z_l,...,v‘Ti‘_l, (I—IV')T“+1-1.

Thus we have

- (vlr---)v‘+l)l_l
,,',(_.v dt,...dt,ﬂ;j"v- Y
_ (a+i—1)!
=D —1+]a)!
By (1.4), we therefore obtain
27 (Ua, i/ UX)= (

n—1+la)!,_,

dv, ...dv‘+1
T

(n—1)! (a+i—1)!
z p'(x)_—_(i—l)!
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Putting z=1—|x| and differentiating the binomial expansion keeping z fixed yiélds

i—1)!
ed = oy kD 2P
o G—1)!
Now using Leibnitz’s formula, we get
o & fa (a—1)!n! . _

so that (2.5) follows from (2.7), (2.8) and (2.9) after rearrangement.

We can now prove that U, 4 U, 4 have the commutative property. We shall
prove

Theorem 3. For n, m=1, (U, 4 Up, af X)=(Unpm, 4 Un, oJXX) for all fe C(T,).

Proof. It follows from (2.3) and the fact that polynomials are dense in C(T),
that it suffices to prove the result for f(x)=x", aeZ% . In this case, from (2.5)
we get

(Unm, a Un, afX%)= (n—1)'a! & 1 (u_l

n—1+la)!,, iT—f)!\ i—1

_ (m=1ti! 4 m! i—1
‘U-'-“’X""(m_1+|in!,foi!(m—m)!(i—l)""

Interchanging the order of summation, we have

)(U.... at')x),

where

CmCaCa & x} a 1
U, s Un NNO=G = et 2 G — D! Zn—ml@—ia-piem—1+m!"

where we have set ¢,,=m!(m—1)! and ¢, =a!(a—1)!. The second summation
above can be rewritten as

1 -il<m+n—l>(a—j>
m+n—1ta=j! _\ n—li+jl J\ i /J

It is easy to see by combinatorial considerations or by multiplying suitable
binomial expressions that

-z—:j(m+n—l>(a—j) _ <m+n—1+|a|~li|)
o\ n—li+jl J\ i n—lil '

Thus we obtain
CMcnc.

Un.a Un. = e Ti— 1 + 1) [ m+ n—1)!
2 xim+n—1+|a|—|j))
j=0 Ci(m—1jD! (n—1j]! (x—j)"
The symmetry of the above expression in m and n completes the proof. m

X
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Henceforward in this section we shall for simplicity restrict our attention to
d=1 or 2. In general it can be easily seen how the results extend to d=3.

Theorem 4. The operator U, , has eigenvalues
_ (n—1)!n!
T (n—14m)!(n—m)V’

and for m=2, corresponding eigenfunctions Fp_ 3, where

(2.10) An, m m=0, 1,...,n,

(2.11) F,,,(x)=§m-(x"“(l—x)"'“).

Proof. We have already seen that U, , reproduces linear functions and so
A 0=7m 1 =1 and the corresponding eigenfunctions are 1 and x. Now recall that
(Un, 1fY =Mn_, ((f). It is shown in [4] that M, , has eigenvalues 4,41, m+1,
m=0, 1,...,n with corresponding eigenfunctions P,(x), the Legendre poly-
nomials of degree m given by (upto a constant factor)

=)
Defining F,, by (2.11), we see that F,, =P,., and so
(Un. 1Fm—2)1=Mn-l.lPm—lzln,mpm—l=ln.mF;n—2-
Since U, ; Fp-2(0)=F,-2(0)=0, we have
Un1Fm-2=%n,mFm-2- =

P,(x)=

Theorem 5. The operator U, , also has eigenvalues A, m, m=0, 1,...,n and for
m=2, the corresponding eigenspace has as a basis the m+1 functions

Fm—z(x)’ Fm—Z(y), F,,,_z(l—x—)’) and Fr.m—S—r(xa .V), 0§r§m—3,
where F,,_, is given by (2.11) and

+s

ox"oy* .
Proof. As in Theorem 4, /1,,0=A,, =1 are eigenvalue with eigenspace the
linear functions. By Theorem 1 and 4, we know that for m22, F,,_(x), Fm-2(y)
and F,_,(1—x—y) are eigenfunctions of U, , with eigenvalue 4, .
Now for [=3, set
Y :={pell, : px, y)=xx{1—x—y)(x, y), ql,_3}.

For fixed n>3, we shall prove by induction on m that for m=3,..., n, U, ; has,
corresponding to the eigenvalue 4, , an eigenspace of dimension m—2 in I1 but
not in I1%_,. For m=3, we see that

M3 ={pell, : p(x, y)=cxy(1—x—y), ¢ constant}.

By Theorem 2, U, ,p preserves the degree of p, and since peIl3 vanishes on the
sides of T, it follows that U, ,p=c,p, where from (2.5), we see that

(2.12) F,  (x, y)= "yt 1l —x—yy**th), r+s=m-3.
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(n—1)n—2)
n+1)n+2) ) o
suppose the result is true for m—1. If p is a polynomial in IT2 but not in ITY,_,,
then by (2.5)

(2.13) Up 2P=4n,mP+4;

for some q in I1%_,. We note that A, ,, is strictly decreasing in m for m> 1. By the
inductive hypothesis, we know that U, , restricted to T2 _, has eigenvalues 4, ;,-
0<j<m-—1 and thus does not have 4, . as an eigenvalue. So there is a unique
polynomial r in IT_, with

Ci=Ap 3= Thus the result is true for m=3. So take 4<m=<n and

(Un. 2 _)'m)r= q
which from (2.13) gives v
Un. 2(p - r) = )'n. m(p - r)-

Hence p—r is an eigenfunction with eigenvalue 4, ,, and the inductive hypothesis
is established.

Now suppose that p(x, y) is an eigenfunction in IT? corresponding to the
eigenvalue 4, ; and f(x, y) is an eigenfunction in IS corresponding to 4, ., | # m.
Then p(x9 )’)=x)’(1 —x—Y)‘I(X, y)’ p(xv Y)=XY(1 "’x_.V)Q(xa y)’ where Q(xay)enl-3
and 4(x, y)eIl,_;. Also

ln.lIXY(I_x_y)q(xi Y)Q(xv y)
T
= [ U,, 2p(x, y)i(x, y)dxdy
T

= (a0 ), P Y[ (=10 —2pi-1, j-1,6-1 (4 0)p(u, v)dudvdxdy
T ijkz1 T
on using (1.7). Since
pi.j.k(xv Y)pi—l.J—l.h—l(uv vju(1 "“—v)=x)’(1—X-Y)Pf—l.j—n.u-x(X, P, j. k(U v)
it follows from the above that
)'n.ljxy(l —x—Y)‘I(x, }’)4(", y)dxdy= I Ull. Zp(u’ U)q(“, U) dudv
T T :

=n, m | XA1 —x—)q(x, Y)(x, y)dxdy.
T

Since A, ; # A, m,» We must have
§ xy(1—x—y)g(x, yM(x, y)dxdy=D0.

T
From the theory of orthogonal polynomials ([1], Chapter 6) the polynomials given
by (2.12), for 0Sr+s<m—3, are orthogonal with resgect to the weight function
x)1—x—y) and span the space ITS. It follows that the eigenspace in m
corresponding to eigenvalue 4, , must lie in the span of F, m-3-,, 0Sr=m-3.
Since this eigenspace has dimension m—2, the result follows.
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Corollary. For 0 <m<n, the eigenfunctions of U, , corresponding to eigenvalue
An.ms all satisfy the differential equation

(2.14) X(1—=X)fex+ Y1 = Y)fyy = 2%y fry + m(m—1) f=0.

Proof. It is known [11] that f=F,,(x) given by (2.11) satisfies the differential
equation

x(1—x)frx+(Mm+2)m+1)f=0

and it follows immediately that F,_;(x), Fpm-2()), Fm- 2(1 —x y) satisfy (2.14).
It is known ([1], p. 103, formula(18)) that g(x, y) :=x F,, {x, y) satisfies
the following differential equations:

2.15) X(1 = X)gxx—XYgxy+ 2+ (s—2)X)g, —(2+1)yg,+ 2+r)r+s+1)g=0
) W1 =)y —XYGxy + 2+ —2)y)g, — (2 +5)xg . +(s+2)r + s+ 1)g=0.

Putting f(x, y)=F, (x, y)=xyg(x, y), we see easily that
X(1 = %) fax + W1 = ) fyy — 2Xfy
=xy0e(1 = X)gx + W1 — )y, — 2XVG1y +(2— 4x)g..+ (2—4Y)g, — 2]
= —xy(r+s+2Xr+s+3)g(x, y)
on adding the two equations in (2.15). Thus for r+s=m—3, we see that

f(x, y)=F, ((x, y) satisfies (2.14). n
For n=0, we set
UPfx):= I pijx®[Bijr1.x+10f(®)dL,
i+j+k=n
(2.16) UPfx):= X pij.x(X) [ Bisy,je+1(0)f(0)dt,
i+j+k=n
UPf(x):= X Pt.j.k(x)IBH1.1+1.k(‘)f(t)dt,
i+j+k=n

as operators from C(T,) to Il,. Thus it is easy to see on using (1.5) that, for
example

UPf)= I pija(x)f+Dnp; ;-1 dt
i+j+k=n
n /2! 1

2.17) + I pio,n-ilX) [ (14 )Py, a- (OS¢, O)dt.
[}

i=0
We shall prove

o

Theorem 6. For fe C(T,) with EP continuous, we have

(2.18) (U.. 2%, y)= (U‘,”x( ))(x, y), (x, YET,.

Proof. [gnormg Bernstein basis functions with any negative subscripts, we
have :
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0
a(un.f)(x’ _V)= z

i+jtk=n

n(pi-1, j.x(x, Y)—p;, jk-1(x ) I B;, j.«(u, v)f(u, v)dudv
T ;

= z pi. j. k(x, Y)_f"(B.'H.j.k(“, v)—'Bi.j.k+l(ua v))f(u, v)dudv
T

i+j+k=n—1
‘o
. z pi.j.k(xs Y)!(_E—Bi+l.j.t+l(uy v))f(“, v) dudv
i+j+k=n—1 T u
of
= P Y Bisvy,jxe1(u v)(a—)dudv,
i+jtk=n—1 T u

by the definition of the derivative of a distribution. This gives (2.18).
Similarly, we can see that

0 0,
(2.19) 5 (Un, )z, )= U, %)(x, »,

0 0 0 0
Q20) (5= 5 Wn 2, )= U?.’l(% -2y,

3. Convexity
For fe C(T), we denote by B,f the Bernstein polynomial

[} [}
(3.1 . BNX)= Z pXf(F,....72).
M=n n n
As a special case of Theorem 2 of [8], we know that the operator U, , is
variation-diminishing and so for any feC[0, 1] and linear function I,
S(U,. 1f—D=S(f—1), where S(g) denotes the number of strict sign changes of
a function g on [0, 1]. In particular, we see that if f is convex, then so is U, ,f.
Henceforward in this section, we assume that d=2.1In [2], G. Z. Chang and
P.J. Davis have given an example of a convex function f'in C(T') for which the
quadratic Bernstein polynomial B, fis not convex. For the same function it can be
easily checked on using (1.7) that U, f is also not convex and so U, does not, in
general, preserve convexity. However, like B,, U, does preserve a stronger form of
convexity which we now describe.
" We say that a function fin C(T) is strongly convex, with respect to T if we
ave

f(xv .V)+f(x+h, Y)éf(x’ Y+h)+f(x+h, _V—h),
(32 S, Y)+f(x, y+h) < f(x+h, y)+f(x—h, y+h),

S, +f(x+h, y—h) = f(x+h, y)+f(x, y—h),

whenever these points lie in T. That these conditions imply convexity can be
easily seen as follows. From Theorem 5 [2] it follows that if fis strongly convex
with respect to T, then B, fis convex. Since B, f converges to fas n — oo, it follows
that f is convex. :
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If fe C¥(T), then f is strongly convex with respect to T if and only if
(3.3) fix2 foy20 and f,, 2 [, 20,

and it can be seen immediately that these conditions imply convexity.
We can now prove

Theorem 7. If f is strongly convex with respect to T, then so is U,f.
Proof. First suppose fe CT). Then as in Theorem 6, we can show that

az
(34) 5xay U N Y)
= z i iok(x, V) B; (u v)—al(u v)dudv =0
o irken—2 Di, j. k\ X5 Y, i+1, j+1, k2, V)72 AU, =0,
by (3.3).

Similarly, we can show that
d,0 0 d,0 0
—(=——= 20, —(=——— =0
52 Gx ~ 3 \UNZ0, 5.5 = ) WNZ0,

and the result follows from (3.3).

For a general function fin C(T), which is strongly convex with respect to T,
we note that G. Z. Chang and P. J. Davis [2] have shown that B, f is also
strongly convex. Thus U, (B,,f) is strongly convex with respect to T. Since B, f
converges to f as m — oo, it follows that U,(B,,/) = U,fas m — oo. It follows from
(3.2) that U,f is strongly convex.m ’

Theorem 8. If fe C(T) is convex, thus
U.f(x, y)ZB,f(x, y).

Proof. Since both B, and U, reproduce linear functions, we have

i
xX= z ;pi.j. x(x, y)= z pi.j.k(xs }’)IBi.J.u(“, v)ududv

i+j+k=n i+j+k=n
and so
;';--—- | Bi, j. x(u, v)ududv, "’—;= | B;, j x(u, v)vdudv, i+j+k=n.
So by convexity of f, we have
f(%, %)g]B,,,,,(u, v)f(u, v)dudv.
Thus

Bufs D= = S(r. L)pisate,

i+j+k=n

< T pijale YIBisal 0fu, v)dudv="U,f(x, y).

i+j+k=n
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To finish this section we shall show that if f in C(T) is convex, then the
sequence (U, f) is decreasing. This will require two lemmas. First we show that the
average value of a convex function on a simplex is bounded by the average value
of the function on the boundary of the simplex. To be precise we have

Lemma 1. If fe C(T,) is convex, then
(3.5) d! [ f(ty,...,t,)de,...dt,
Ta

1 d+1 -
é——"‘ z (d—'l)! j f(tl"'t‘—l’ 0, t(+loo.t‘)dtl-o-dti...dtd+l,
where we use the symbol dt, to denote that dt, is omitted in the integration. We also
recall the convention defined in (1.2).

Proof If t=(t,,...,t,) is any point in the interior of T, and if ¢; and ¢; are
replaced by a and b respectively, we shall denote the new point by tG,j; a, b).
Similarly if ¢, is replaced by a we shall denote the point by t(i; a). With this
convention, it is easy to see that

t-——?— ;: [_1_—I_t|_t(l 0)+__t‘__t(, t,+1—|t)]
Tdd+1) Loy i =g

L

+ T

1Si<jsd i j
Since f is convex, we have

t
(: b+t O+t O, t,+t,)]}.
i j

.. L e s
Itlf (t(G; 0) + P —Itlf (tG; ;+1—14)]

£ 1—1¢
>
d(d+l){i=,[ t ol —

G t .
L ey LR s LS t‘+:,»1}.

Integrating both sides over T, we obtain

JO=

d(d;nm)d,é;: ) .;_(ti+1—|t|)f(t(i; 0)dt, ...dR,...dt,
Tq

i=1 Td—l

+;7 | %(t.-+l—ltl)f(t(i; t,+1—th)de, ...df;...dt,

i=1 Tq_y

+ Z j—l—t,f(t(i; 0)dt,...dt;...dt,

1si<jsd Tg—1

+ Z j—;-t}f(t(i; 0)dt, ...df;...dt,,

1si<jsd Tg—1

where in the last two summations we have relabelled t;+t; as ¢; and ¢, respectively.
In the second summation we now make a change of variable and use convection
(1.2). This yields
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d(d+1) I fodts £ | -(t,+l—|t|)f(t(l, 0)de,...dt,...dt,
i=1 T4 l
- -tJ(tp -2 ta)dty ... dt
i=1 T4 1
+E T | —t,f(t(l, 0)dt, .. dt,....dt,.

i=1 j=1T4_ 1
j#i

Combnmng the first and last summations and observing that

+1—|t|+ 2 t;=1,
j=1
j#i
we get

dd+1) ; fHde < £ [ St O)de,...dt,...dtg+ [ f(ty,...,t)de, ... de,

i=1 T4_, Tqg-1
On using the convention (1.2), we see that this gives the formula (3.5).m

Lemma 2. If fe C(T,) is convex and i20, j20, i+j<n+1, and if
(3.7 gy, s b)) =fty+ ...+t g+ . Hlinj),

n+1

then g(t,,...,t,) is convex on T,, where T t;=1.
1

Proof. First snppose i+j<n. Then for a, beT,, 0=4A=1,
i+j i+j

g(ha+(1—)b)=f(2 T a+(1-1) £b,i % a+(l-2) T b)
v=1 v=1 v=i+1 v=i+1
i i+j i i+j
=fA(Z a, Z a)+ (1-H(Zb, I b,))
v=1 v=i+1 v=1 v=i+1
i i+j i i+j
) élf« z a,, z av)"'(l—j')f( p> bv’ z bv»
v=1 v=i+1 v=1 v=i+1
=Ag(a)+(1—A)g(b).

Ifi+j=n+1, then g(tys.--st)=f(tys-..ot;; 1—t,— ... —t;) and the result follows
similarly. .
We can now prove :

Theorem 9. If fe C(T,) is convex, then for all n=1,

(3.8) Uns SJSULS
Proof. Since for i+j+k=n, we have
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n!
pijx(x, y)= AT x'Y(1—x—ylx+y+(1—x—y)]

i+1
n+l
it follows that

j+1 k+1
——Di+1, k(X Y)'*‘—P- jra(x, Y)+ Pi.jx+1(x, y)

n+1 +1

i+1

+1
U X, = 2 i X, +_— )
S (x5 y) HHHH{ +1P +1, ], k(x, ) +1pi.j+l.k(x y)

k+
n+l

= z Pi, J» k(x y)j‘{

i+j+k=n+1

— 7 Di.j. k+1(%, _Y)}IB. j ,,(u v)f(u v)dudv

B, j.x(u, U)+ B; j-1,x(u, v)

+1 l

k
+ n—+—13i. k-1, v)}f (u, v) dudv.

Comparing it with the definition of U,+ . f(x, y), we see that to prove the result, it
is sufficient to prove that for i+j+k=n+1, we must have

(39  [Bi i, )f(y, v)dudvéf{n+18. k(s O+ "7 Bijor (s 0)

k
+m B,'_ k=1 (u, v)}f(u, v) dudv.
But from (1.3), we know that
j’B,-_M(u, v)f(u, v)dudv=n! j‘f(t1+...+t,., tivr+ ... Hliyy)dt de, . dt, .

By Lemma?2, f(t,+ . +t,, tiv1+ ... +t;4j) is convex T, and so applying
Lemma 1, and thus relabellmg the vanablcs, suitably, we obtain

’;["B,-. k(s 0)f(u, v) dudv§(':l+

{ jf(:+ Jlioys Lo H o )dey L dt,

+J .‘- f(tl+"' n |+1+ +t‘+1—1)dt1...dtu

Th—y

+k | flt,+...+¢, t,“+...+ti+,)dt1...dt,}.

Tph-y

The reslt‘xlt now follows on applying formula (1.3) again to each of the integrals on
the right
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4. Convergence
We shall now give a Voronovskaja type result for the operator U,. To do so
we shall prove some lemmas.
Lemma 3. U, ,(- —a)*(@=0(n"?2).
Proof From (2.5) and (2.10), we see that if f(x)=x*, then
k(k—1)

U, ,f(x)=).,,_,(x"+n_k+ ] x*"1)+0(n~32).
Expanding (x—a)* and applying U, , gives the result after some elementary
calculations. o
Lemma 4. If fi ,=x*)', then
4.1) }}p{l n(U,, 2f 20(x, y)—x*)=2x(1—-Xx),
4.2) Lim n(Un, 2/11(x, y)—xy)=—2xy.

Proof. Simple calculation from (2.5) shows that
n—1_, 2x
— X"+

n+1 n+1

U, 2/20(x, V)=

Ly ?
_ nr
The lemma follows immediately from the above. .

It follows from (4.1) on using a well-known result of Shisha and M ond ([3],
p.28, Theorem 2.3) that if off: 8) is the modulus of continuity of f, then

1Un 1 S—~f 1 S 200 ﬁ).
We now prove

Theorem 10. If fe C(T,) is twice differentiable at a=(a,,...,a,) in Ty, then
2

. _ d aZf af
(4.3) 3!33) (U, of — N8)= ‘fil a;(1 —ai)g‘z(a)—Z lsf]s‘aia;m (a).

Un. Zfll(x’ )=

Proof. For xeT,, we have

~ ‘ o, 14 ,0%d
f(x)=fla)+ i.:-‘-‘ (x‘—a‘)a—x,(a)-'-i,.fl (xi—ay) ax? ()
o*f
+ X i— —a;)——(a)+ R(x),
1si<jsd i ai)(xj aj) 0x; ax} ® :

d
where R(x)=n(x) £ (x;—a;)? n being a bounded function in T, with n(x) -0 as
i=1
X — a.
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Recalling Theorem 4 and the fact that U, reproduces linear functions, we
have

1 d 3 3 aZf
Un.af(x)=f(ﬂ)+§ Z (U, 1(t*Xa;)—ai )W(a)
i=1 i
. azf
+ X (Un.Z(Stxaiaj)_aiaj)m(a)'*'Un.dR(x)-
1<i<jsd 10Xy,

From Lemma 2, all that remains to prove is that
lim nU,, 4R(x)=0.

n—* oo

d
Take £>0 and choose 6> 0 such that |n(x)| <& whenever ¥ (x;—a;)?<d. Then if
In(x)| <k for xe T,, we have =

d k d
IR(x)|=¢ X (x.-—a.-)2+5( Z (x—a)’)%
i=1 i=1
Thus we have
d ndk d
nU, sR(x)<en T {U,, 1(‘2)(0.')—0-'2}'*'—5‘ Z U, (t—a)*
i=1 i=1
The result now follows from Lemmas 3 and 4. [
If f has continuous partial derivatives of order a=(a,,..., o,), then we can
give estimates of the difference (D°U,f—D%)(x) in terms of the modulus of
continuity of D°. More precisely, we have
Theorem 11. If D°%e C(T), then we have
4.4 ID*ULfI = IDYI

and
(4.5) IDU,/— DYl £ C, oAD%¥; ﬁ)+%llb'f||,

where for g in C(T), ||g|l := suplg(x)| and C,, C, are constants independent of n.
xeT .

Proof. We shall prove the result when d=2. If a=(«,, «,), then from (1.4),
on applying the method of proof of Theorem 6 repeatedly, we see that

(4.6) DU, .f(x)=a, I  pijx(X) [ Bisay, jray k+a;+a, (DY) ()AL,
i+j+k=n—la| T
where we have set
. (n—1)!n!
I =m—1+la)(n—la)!

Since a,<1 and
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IBi+zl.j+¢2.h+al +a,(t)dt=1,
T

from (4.6), we get (4.4).
In order to prove (4.5), we observe that
4.7 (D*U,f—D%¥)(x)=(1 —a,) (DY) (x)+a,I.,
where
Iyi= ) pi, j, x(X) j Biia,,jtay k+a, +¢2(t) (Df(t)—Df(x)dt.
i+j+k=n—|a| T
Then for any 6>0 we have
t—Xx
LISOOF &) = pu s [+ S Brray jrap ke (Ot
i+j+k=n—|a| T
(4.8)
1
SoDY; )[1+< T pi ) [1t—=XIBisa,, jtay k+ay+a,(t)dE].
6i+j+k=n—|¢| T

In order to estimate the sum above in the brackets, we first observe that by
Schwarz inequality

(4'9) IBi+al.j+az.k+¢l +a2(t) It—XI dté[jBi+al.]+uz.k+al +¢2(t) It—X|2dt] 12 e
T T

Now using Schwarz inequality on the sum, we have

(4.10) Z Pk Bisay. jtay k+a,+ay(®)|t—x]7dE] 1/
i+j+k=n—|a| T
SI T pijr(®) [ Bivay. jrag ktay+a Ot—x|2de] V2.
i+j+k=n—ja| T 2
In order to estimate the above, we shall require the integral
(411) Ap(i9 ja k)= !Bi+¢‘.]+a2.k+¢l +¢2(t)t{ dt.
T

An easy calculation on using (1.5) shows that
_(m+la=)!(p+ita, —1)!

= , p=0, 1,..
(i+a,— ) (n+p+la—1)!

@.12)  A,G, j, b):

Hence we have
T Pijk(X) [ Bivay, jrag k+ay+ay (O —x,)*dt
T

i+j+k=n—|a|
z pi.j. t(x) [Az(l, ja k)_leAl(i’ ja k)+x% Ao(i, j’ k)]
i+j+k=n—|a|
2x,(1—x,) 1
4.13) =———"+0(3),

on using (4.12) and simple properties of Bernstein polynomials on the simplex, viz.
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1, v=0
i
b pi’j'k(x)(n—-k;[)v: X, v=1
i+j+k=n—|al ——
+i+ x(1 x)+ 2 y=2
n—|al

Thus combining (4.8), (4.9), (4.10) and (4.13), we have

— - 1
s i+ TX0=5), o)y,

Ea
n
follows from (4.7) and the estimate of |I,]|. ]

1 . 1
Choosing 6=n""/2, we get |I,|<C,o(D; —=). Since 1—a,= +O(F)’ 4.5)
n
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