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e O e il oo compittod, 0 some Charasterizations wil to cotablbbod.

In the paper [1] the author introduced the notation of the =, -semigroup as
a finite semigroup S with |n(S)|=n, where the set n(S)={|T1>1/2|S|: T forms
a proper subsemigroup of S}. Determining all of L-semigroups (Lagrange
semigroups) was the earliest work on =,-semigroups, and it was completely
motivated by the consideration to Lagrange’s Theorem — one of the most
fundamental theorems of the theory of finite groups — in the theory of finite
semigroups. The question of determining all of L-semigroups was first raised in [2]
and entirely resolved in [3]. It follows from the characterization, which was
established in [3], that L-semigroup and n, -semigroup are the same one concept.
In [1] the author have determined the structure of the =, -semigroup with one-side
identity, and characterized some =, -semigroups without one-side identity. The
present paper will be used to resolve the remain problem about =, -semigroups,
that is, to determine the types of =, -semigroups without one-side identity.

The notations and terminologies are taken from [1, 4].

We first deal with a special situation of =, -semigroups, utilising the results of
[1): v

Theorem 1. For a finite non-simple semigroup S, n(S)={|S|—1} if and only if
S is one of the following types:

1) IS|=3 or 4; 2) S=Gu {x}, x=x3;
3) S=Gu{x}, x*=x2*"€G, neN, where G is a finite group admitting no
subgroup R of index 2 such that {x)—R={x}. ,

Proof. We need only prove the essentiality, and assume |S|25.

By the condition n(S)={|S|—1}. We may suppose that G is a subsemigroup
of S of order equal to |S|—1 and S—G = {x}. Evidently, ®(G)=Q or {1/2|S]}. Since
1/2|S|<1/2|G| +1, there must be the equation n(G)=@ by Th.4.3 of [1] and so
G is an L-semigroup by the result of [3]. R

G must be a group. Otherwise, we may suppose G has no right identity and
there exist two idempotents e and f of G such that G=Ge U Gf by the result of [3].
If S'x=S, then S=S'x=(S'x)'x=5x?u {x}, this shows G < Sx* and so



204 Shi Mingquan

G=Gx* and x=x? hence Seu {x} forms a subsemigroup of S of order
1/2|G|+1=1/2(|S|+1), a contradictions; if S'x # S, then either Seu S'x
=Ge v {x} or Sfu S'x=Gf U {x}, hence S must contains a proper subsemigroup
Seu S'x or Sfu .S(" x of order 1/2|G|+1=1/2(|S|+ 1), a contradiction. So G forms
a group.

Let R be a subgroup of G of index 2, then {(x)—R # {x}. In fact, if
{x)—R={x}, then Ru{x} forms a subsemigroup of S and its order is
1/2|G|+1=1/2(]S]+1), a contradiction.

S is of the type 3) if x # x2. Since (x> —{x} ={x) N G forms a subgroup of G,
we have the identity x"*2=x2, ne N for the monogonic semigroup {x).

This completes the proof.

Example 1. Let S={a,x; a’=a, x*=x* x3=a®). Then S forms
a semigroup of order 7 with n(S)={|S|—1}, and it is worth to indicate that S —{x}
contains a subgroup <a?) of index 2.

To determine the types of 7, -semigroups without one-side identity, we need
consult some properties of the finite semigroup S==Se U Sf, where ef=f and fe=e.
It will be seen that S may have a more “complex” structure.

Theorem 2. Let S=_Se U Sf, where ef=f and fe=e, be a finite semigroup. Then
the following conditions are equivalent:

1) Sxy=Sy for any two elements x, y of E(S)n(L, UL )

2) T= U Tor(x) forms a simple subsemigroup of S and S—T the
) er(S)r\(LeuLf)
maximal ideal of S.

Proof. By the given condition Tor(x) < Sx for any element x of the set
E(S)n(L,uL/), hence Tor(x)=H, forms a subgroup of S by Th.2.1 of [1].

2) implies 1): It is evident.

1) implies 2): By Th. 2.1 of [1] we need only prove the conclusion for the case
of e # f. If there exists an element p of the set P=Se— U  Tor(x) such that

xeES)nL,
pfeTor(y) for some yeE(S)n L, then there exists a number ne N such that
(p)"=y, and so, by the condition 1), Sy==Sey==Se(pf)"=Sep(fp)" 'f, hence
Sy=Pf by Th.2.1 of [1]. Further, we have Se=Sye=(Pf)e=P(fe)=P, this is
a contradiction. Thus Pf must be contained in @Q=Sf— U Tor(x). By the
xe&S)an

same way we can prove Qe=P, and so Pf=Q, Qe=P, (Se—P)f=Sf—0Q,
(Sf—Q)e=Se—P. Hence T=S—P U Q forms a simple subsemigroup of S, and
S—T forms the maximal ideal of S by Th.2.1 of [1].

Example 2. The semigroup S presented with the following Cayley table
will be of the form S=Se U Sf, ef=fand fe=e. Although |E(S)nL,|=|E(S)n L /|
yet S does not satisfy the condition as required in Th.2.1 Here e=2 and f=6. (gee‘
[5]: NR.SS5, or see [6]).
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Lemma 1. Le S=Seu Sf where ef=f and fe=e be a finite non-simple
semigroup. If r<3|S|/4 for any number r&=(S), then X={|E(S)nL,|:x=e,
f}={1}, or {2}, or {2, 3}. _

Proof. (1) MaxX <3 and MinX =<2

Let ¢ be an element of E(S) n L, and z an element of S. By the given condition
eS=fS and z=ze or zf, hence zS=(ze)S or (zf)S=2z(eS) or z(fS)=z(eS)=z(et)
=(ze)tS) and so |zS|<|tS|. This shows that tS=zS if tS < zS. Thus xS must be
a maximal left principle ideal of S for any element x of E(S)n(L,uL,).

Clearly, by the given condition we have S= U xS. If Max X =4, then, by the

x€e S
preceding result, n>4 if there exist the elements x,, x,,..., x, of S such that

S=x,Sux,Su...ux,S,and so U yS must forms a proper subsemigroup
ye S—R,
of S of order =3|S| /4, h an element of E(S) (L, v L ) such that |[E(S)n L,|=4.
In fact, S—R,= u yS and |R,|=I|S]| /4 by |ES)nL,|=4. This is
ye S—Ry
a contradiction. So Max X =3. ‘

Now it remains to prove MinX # 3: otherwise, X={3}, if S satisfies
the condition as required in Th.2, then either' S—Tor(e)—Tor(f) or
T= v Tor(x) forms a proper subsemigroup of S of order =3|S|/4; if

er&)r\(LcuL f)

S does not the condition, then the order of the set {xS:xe S} is greater than 4,
and so S must admit a proper subsemigroup of order = 3|(S| /4 by the same way as
the proof of Max X <3, a contradiction. Therefore Min X =2.

(2) MaxX =1 if MinX=1.

Otherwise, let |E(S)nL,|>|E(S)nL.|=1. By |E(S)nL,|=2 we have
|Tor (e)] < 1/4|S|, and so Se U (Se— Tor (e))f forms a proper subsemigroup of order
>31S|/4 since Se—Tor(e) forms the maximal ideal of Se by Th.2.1 of [1],
a contradiction.

Thus the conclusion holds as required.

<

Example 3. In example 2 the semigroup S clearly satisfies the demand of
Le1 and its X = {2}. Now we give an example with the following Cayley table for
X ={2, 3}, and it’s easy to check that n(S)={4, 5}. Here e=1 and f=6. (See [6])
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* 1 2 3 45 6 7
1 1 1 4 45 5 4
2 2 2 4 46 6 4
3 334477 4
4 4 4 4 4 4 4 4
5 1 114555
6 2 22 46 6 6
7 33347717

Theorem 3. Let S=Sau Sbu Sc where a, b, ceS be a finite non-simple
semigroup and S # Sx L Sy for any x, ye S. Then |n(S)|=1 ifand only if S=U (T, P,
3, 1) where T is a G-monoid of order 2|G| and G a finite group admitting no
subgroup of index 2.

Proof. We need only prove the essentiality.

Step 1. There exist e, f, heE(S) such that S=SeuSfuSh and
|Se| = |Sf]=|Sh|.

1) We assume |Sa|=|Sb| =|Sc|. By the given condition the element a must be
contained in Sa, hence there exists an element e of E(S) such that a=ea. Clearly,
|Se| =|Sa| and so Se=Sa, or Sb, or Sc. This shows that S=Se U Sw U Sz for some
ec E(S), w, ze S, and we have the inequation |Se|=|Sw|=|Sz|. If |Se| # |Sw|, then
both T=SwuSzu(Se— U Tor(x))and T U {e} form two subsemigroups of

xeES)NnL,
order greater than 1/2|S|. Ev1dently, e¢ T and so Tu{e} by the condition
[®(S)=1, hence =(S)={|S|—1}, this is a contradiction to the assumption
S=SauSbuSc by Thl. Hence there exist w, zeS and eeE(S) such that
S=SeuSwu Sz and |Se|=|Sw|=|Sz|.

2) There exist e,feE(S) and xeS such that S=SeuSfuSx and
|Se] =|Sf]1=|Sx|. At first, we prove the required result is true if S=Se U SfuU Sx for
some e, fe E(S), xe S and |Se|=|Sf|=|Sx|: otherwise, |Sf |>|Sx]. Clearly, for any
two t,ue E(S)n(L,u L), |St U Sx|>1/2|S| and S contains two subsemigroups of
order greater than 1/2 |S| St U Sx U Stu L Sxu and St U Sx U Stu LU Sxu U {u}. By
|n(S)]=1 and Th1 we have S=St U Sx U Stu U Sxu, hence Su==Stu. This shows
the semigroup Seu Sf satisfies the condition 1) of Th.2. By Th.2 and the
assumption |Sf|>|Sx| it is easy to verify that S admits the subsemigroups:
T= v Tor(x), S—T, (S—T)u{e}. Since |TI<|Seu Sf]<IS|, =(S)

er(S)n(LeuLJ-)
={1/2|S|+1} or {|S|—1} by |n(S)|=1. Based on Th.4.3 of [1] and Th. 1, this is
a contradiction to the given condition S=Sau Sbu Sc and S # Sx U Sy for any
x,y€S.

Now we prove S=Se U Sf U Sx for some e, f€ E(S), xeS and |Se|=|Sf| =|Sx|:
in 1) we have showed that S=SeuSwu Sz for some eeE(S), w,zeS and
|Se] =|Sw|=|Sz|. By the given condition w must be contained in Sw, hence there
exists t € E(S) such that w=tw, and so St==Se, or Sw, or Sz. If St=Sw or Sz, the



n,-Semigroups ' 207

required result has been proved; if St=_Se, Sw=_Sew. Clearly, |Swu Sz|>1/2|S],
and so S=Swe U Sze U Sw L Sz by the condition |r(S)| =1, hence Se=Swe or Sze,
if Se=Swe, then Sw=S(ew)" for any ne N and so the required result is true; if
Se=Sze, we consider Sz by the same way, there exists h € E(S) such that z=hz and
Sh=Se, or Sw, or Sz: if Sh=Se, then Sz=S(ez)" for any ne N and so the required
result is also true; otherwise, the required result has been proved. .

3) There exist e, f, he E(S) such that S=Se U SfU Sh and |Se|=|Sf|=|Sh|. By
the given condition x must be contained in Sx, hence there exists ¢ € E(S) such that
x=tx and St=_Se, or Sf, or Sx. If St=Sx, the required result has been proved;
now we consider the case of St =Sf or Sx: at first, we indicate two points: (1) there
exisgs geE(S)n(L,u L) such that Sxg=Sg (otherwise, Suv=_Sv for any two
u,ve E(S)n(L,uU L), this will derive a contradiction. The proof is the same as
2)); (2) St=Sgt or Sxt (otherwise, S contains two subsemigroups Sg L Sx L Sgt
U Sxt and Sg U Sx U Sgt LU Sxt U {t}, this will derive a contradiction to |n(S)|=1).

If ge L,, then Sx =(St)x =(Sg)x =(S(xg))x =(SxNgx)=...=S(gx)" for any ne N and
so Sx=Sh, h the idempotent of {gx); if g¢L,, then Sx=(S)x=(Sgt)x or
(Sxt)x=...=S(gtx)" or S(tx)" for any ne N and so Sx=Sh, h the idempotent of

{gtx) or {tx).

Step 2. For any two x, y€{e, f; h} there exist te ES)n L, and ue E(S)nL,
such that tu=u and ut=t. )

It is enough to prove that there exist ke E(S)n L, l€ E(S)n L, such that
Skl= Sl or Slk =Sk for any two x, y€ {e, f, h} : in fact, if SkI=SI, then, by the given
condition, there exists v € E(Sk) such that /=vl, hence t and u satisfy the demand if
we let t=Iv and u=L

For any xeE(S)nL,, yeE(S)nL,, zeE(S)nL, it is easy to prove that
Sx=Syx or Szx, Sy=Sxy or Szy, Sz=Sxz or Syz, for example, since
T=SxuSyuSxzuSyz and Tu{z} form two subsemigroups of S of order
greater than 1/2|S|, Sz=Sxz or Syz by |n(S)=1, the given condition and Th. 1.
Clearly, we need only consider the case of Sx=_Syx or Szx, Sy=_Sxy and Sz =Sxz:
by the preceding result and the given condition the subsemigroups Sx L Sy and
Sx U Sz satisfy the condition of Le 1, hence Y={|E(S)nL,|: a=e, f,h}={1}, or
{2}, {2, 3}. If Y={1}, then ef=f, fe=e, eh=h, and he=e by the assumption and
the preceding result, and so h=eh=(fe)h=f(eh)=fh and f=ef= (he){= h(ef)=hf,
hence the required result is true: otherwise, we can assume {f. Pt<E@S)NL,,
{h,q} < E(S)n L,, and, by the same way as last section there exist e,, e,, e,
e,€E(S)n L, such that

{e1f=f’ {ez=P’ . {e3h=h, {e4q=q’
Jey=e,, pe;=éy, hey=e,, ge,=¢€,,
and clearly e, # e,, e5 # e, ; since |E(S) N L, | <3, we may assume e, =e,, and so
h=e, h=(fe,)h=f(e,h)=fh, f=e,f=(he,)f=h(e, f)=Hhf, hence the required result
is also true by the preceding result.

Step 3. Y={1}, where Y={|E(S)nL,|: a=e, f,h}.

Let n(S)={r}, then r=2|S|/3+1 by the results of [1]. If the conclusion does
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not hold, by step 2 and Lel there must be Y={2} or {2, 3}, and
|IE(S)n L, |=|E(S)n L ;|=2 if we might as well assume |E(S)n L,|=Max Y. It is
easy to prove that xS forms a maximal left principle ideal of S for any
xeES)n(L,uL,UL,), hence |X|=2 or 3 by the assumption and |n(S)|=1,
where X={xS:xeE@S)n(L,vL,UL,)}. Now we derive a contradiction,
dividing the argument into two cases:

1) the case of |X|=3. By step2 we may assume

{ef=fa {fl h=h, {elhl=hl’
fe=e’ hf1=f1v hle1=el’
where e, e E(S)n L, fye E(Syn L., h, e E(S)n L,. If Sef, =5f,, then there exists
e,€E(S)n L, such that f,=e,f, and so '
{esf1=f1a {f1h=h’
fies=e;, hfy =11,

where e;=f,e,. It follows from |X|=3 and n(S)={r} that S=f,SuwSu:zS
where w,zeS and wSuzS forms a subsemigroup of order r, hence

3|Tor(e))l=| v Tor()|<|S—(wSu zS)=|S|—r<]S|/3, and so 9|Tor(e)| <|S|;
t=e3.f.h
if Sef, # Sf,, then Sef, =« T=Sf— U Tor(t) and so Tor(f,) < Kf, where
1eE(S)nLI
K=Se— U Tor(t) (otherwise, Tor(f;) N Kf=Q, hence Kf=T, by Sf=Sef

leE{S)nLe
there exists te Se— K such that tf=f,, this shows that Sf, =Sgf, where g is the
idempotent of {(t>, and so Sef, =Sgf, =Sf,, a contradiction). Thus (Se—K)fu
Tor(f;)=3 Tor(e); on the other hand, (Se—K)fn(Seu Sh)=Q, therefore
3|Tor(e) =(ISe— K)fu Tor (f;)| <|S —(Se u Sh)|=|S| —r<|S|/3, that is, 9|Tor(e)
<|S|. This shows that 9|Tor(e)|<|S| if |X|=3.

At the final, we derive a contradiction: since (Se— K)fn (Seu Sh)=@ and
(Se—K)h, n(Seu Sf)=Q, SeuKfuKh,=S—((Se—K)fu(Se—K)h;) and so
|Se u Kfu Kh, |=|S|—4|Tor(e))>1/2|S| by the preceding result. Clearly, Seu
Kfu Kh, forms a subsemigroup of S since K is an ideal of Se by Th.2.1 of [1],
hence |Se u Kfu Kh,|=r by n(S)={r}, that is, r=|S|—4|Tor(e)|; on the other
hand, 2|Tor (e)|=|Se—K)f|= |[(Seu Sf)—(Seu Kf)|=|Se L Sf|—|Se L Kf|=
r —1/2]S|, hence r<2|S|/3. This is a contradiction.

2) the case of |X|=2. At this time, we may assume L,n E(S)={t, t,},
t=e, f,h and eS=fS=hS, e,S=f,S=h,S. Clearly, Sxy=Sy for any two x,
yeE@S)n(L,uL,uL,). By Th.2 it is easy to derive a contradiction to |n(S)|=1.

By 1) and 2{ we have showed Y={1}.

Step 3. The conclusion holds as required.

By Step 2-3 and Th.2 it is easy to verify that Tor () U Tor (f) U Tor (h) forms
a simple subsemigroup of S and §—Tor(e) U Tor (f) U Tor (h) forms the maximal
ideal of S, hence |Tor (¢) U Tor (f) L Tor (h)|=r by n(S)={r} and r>2|S|/3, and so
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S=eS. (since Tor(e)u Tor(f)u Tor(h) is properly contained in eS). So the
conclusion holds as required by Th.3.1 of [1].

Now we can determine the types of m, -semigroups without one-side identity
in the following

Theorem 4. For a finite non-simple semigroup S without one-side identity,
In(S)I=1 if and only if S is one of the following:

1) |S|=3, or 4;

2) S= Gu{x} x?=x"*2eG, neN, where G is a finite group admitting no
subgroup R of index 2 such that Ru {x} 2 {x);

3) S contains # [G; I, J, P), where G is a finite group admitting no subgroup of
index 3, |I|=|J|=2 and |S|=6|G|, as a maximal subsemigroup.

Proof. We need only prove the essentiality and let |S|=5.
Clearly, the result have been proved in Th. 1 if =(S)={|S|—1}. Now we may
assume that n(S)={r}, r<|S|—1. A

Step 1. S=Sau Sb for some a,beS.
Otherwise, if S=Sa U Sb L Sc for some a, b, ce S, S must have left identity by
the former theorem, a contradiction; if S # Sa u Sb U Sc for any three, a,b,c€ S,

then we may assume S= U Sa; by the condition n(S)={r}, r<|S|—1 and this is

i=1
n

the most short decomposition, n=4. Now we assume that |[Sa, — U Sa,| is the

i=2
n

minimal number and |Sa,— U Sag;| is the second, then by the assumption we

s i#A2
have

ISI>| v Sa;uI1>| U Sa; v I|>1/2]S],
i=2 i=3.

where I is the minimal ideal of S. Clearly, it follows from the inequation that
[n(S)|=2, a contradiction.

Thus there exist a, be E(S) such that S=Seu Sb.

Step 2. There exist e, fe E(S) such that S=Seu Sf.

By step 1 we let |Sa]=|Sb|. Evidently, a€ Sa and so there exists e € E(S) such
that a =ea. For the idempotent e we have Se=Sa or Sb, this shows that there exist

.e€E(S) and xeS such that S=Seu Sx and |Se|=|Sx|.

Now we prove |Sx|=1/2|S|: otherwise, |Se|=r and |Sx|<1/2|S|. If Se is
simple, then Se is contained in the minimal ideal I of S and so x € Sx? by the given
condition, hence Sx=Sx2. This shows the monogonic semigroup {x) forms
a group. Clearly, I U E({x)) forms a subscmlgroup oforderr+1,a contradlctlon,
if Se is non-simple, then K= U  Tor(y) is properly contamed in Se and so

yeES) AL,
IS—K|=1/2]S|, hence r=|S|—1 or 1/2|S]+1 since both S—K and (S—K)u {e}
are closed, this is also a contradiction.

Finally, we prove the required result: by the same reason there exists t € E(S)
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such that x=tx. If St=_Sx, the conclusion has been proved; if St # Sx, then
St < Se (in fact, if teSx, then St=Sx, and so St=Sx since Stx=Sx), and so
St =Se since St and St U {e} form two subsemigroups of order =|St|=|Sx|=1/2|S|;
on the other hand, Sxu Sxt and Sx U (Sx)'t are two subsemigroups, and so
St=Sxt by |Sx|=1/2|S], teSx and the condition n(S)={r}, r=<|S|—2, thus
Sx =S(tx)"=Sf where f is the idempotent of {tx). So the conclusion holds as
required.

Step 3. S must be of the case 3).

See Th.4.2 of [1].

This completes the proof.

So far, the classification of n, -semigroup has been completed, and now we
conclude with the following

Theorem 5. For a finite semigroup S, n(S)={2|S|/3} ={1+1/2|S|} if and only
if S is a Z -monoid of order 6, or S=<{a, b; a*=a, b*=b, ab=ba=a), or S contains
an L-semigroup of order 2|S|/3=4 as a maximal subsemigroup. :

Proof. It is easy to verify the direct part. For the converse, if S has no
identity, S must contains an L-semigroup of order 4 as a maximal subsemigroup
by Th.4 and Th.4.3 of [1]; otherwise, S must be a Z,-monoid of order 6, or
S=<{a,b; a*=a, b*=b, ab=ba=a) by Th.3.2 of [1].

Theorem 6. Let S be a finite semigroup with n(S)={r}. Then 2|S|3<r<3|S|/4
if and only if S is a G-monoid of order n, where G is a finite group admitting no
"subgroup of index 2 or 3 and 8n<12|G|<9n.

Proof. We need only prove the essentiality. By Th.4 and Th.3.3 of [1]
S must be a monoid, and so the conclusion holds as required by Th.3.2 of [1].

Theorem 7. For a finite non-simple semigroup S, n(S)={3|S|/4} if and only if
|S|=4, or S contains a subsemigroup T =~ # [G; I, J; P] of order 3|S|/4, where G is
a finite group admitting no subgroup of index 2 and (|I|, J))=(1, 1), or (1, 3), or
(3, 1), and Hu(S—T) forms a H-monoid for any X-class H in T.

Proof. We need only prove the essentiality. By Th.4 S must have one-side
identity if |S| # 4, hence the conclusion holds as required by Th. 3.2, Th. 3.3 of [1]).

Theorem 8. Let S be a finite semigroup with n(S)={r}. Then 3|S|/4<r<|S|—1
if and only if S is a G-monoid of order n, where G is a finite group admitting no
subgroup of index 2 and 3n<4|G|<4(n—1).

Proof. (As the proof of Th.6).
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