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Best Approximation in Linear Spaces Endowed
with Subinner Products

Sever S. Dragomir

'Presented by P. Kenderov

Some characterizations of S-best approximation element, of S-groximinal, S-semitchebychefian
and S-tchebychefian linear subspaces in a linear space endowed with a subinner product are given.

1. Introduction

Let E be a linear space over real or complex number field K. A mapping (,)s
of ExE into K will be called subinner product on E if the following
conditions (P1)—(P3) are satisfied:

(P1) (x, x)s #0 if x #0;
(P2) (Ax, y)s=A(x, y)s and (x, Ay)s=A(x, y)s forall 1eKand x, yin E;
(P3) (x+y, 2)s=(x, z)s+(y, 2)s for all x, y, z in E.

This concept is a natural generalization of inner product, of semi-inner
product in the sense of G. Lumer [5], of semi-inner product in the sense of
R.A.Tapia defined on smooth normed spaces [8] and of R-semi-inner product
which was introduced in paper [2].

Definition 1. Let E be a linear space and (, ) be a subinner product on it. The
element xeE is said to be orthogonal over yeE in the sense of
subinner product or S-orthogonal, for short, if (y, x)s=0. We denote
X |sy-
The following properties of S-orthogonality are obvious from the above
definition:

@ X |sy, x sz imply x |s(y+2);

(ii) x |sy, AeK imply x j¢Ay and Ax |gy.

Now, let G be a nonvoid subset of E. Then
GlS:={yeE|y |sx for all xeG},

will be called the orthogonal complement of G in the sense of subinner
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product or S-orthogonal complement of G, for short. We also remark
that: 06 G5, GN G 15 < {0} and xe G 5, aeK imply axe G 15

The above orthogonality extend usual orthogonality in inner product spaces,
orthogonality in the sense of J. R. Giles [4] and R. A. Tapia [8] and
R-orthogonality which was introduced in [2].

2. Characterizations of best approximation element in the
sense of subinner product

Now, we recall some concepts and results in best approximation theory in
normed linear spaces that will be used in the sequel.

Let E be a normed space and x, y two elements in E. The vector x is called
orthogonal in the sense of Birkhoff over y if |x+Ay| =] x| for all
AeK. We denote this x | zy.

If G is a nondense linear subspace in E and:

Ps(x0):={g9o€G|lIxo—goll = inf lg—xo I},

ge G

denotes the set of best approximation element referring to x,€ E\G in G, then the
following simple characterization lemma in terms of Birkhoff’s orthogo-

nality holds (see Lemma 1.14, from [7]):

Lemma 1. Let E, G, x, be as above and g,€ G. Then g€ P;(x,) if and only if
—4go 18G.
For other characterizations of best approximation element in normed linear
spaces see the monography [7] and the recent papers [1] and [3].
The following result is also valid (see for example [3], Lemma 1.1):

Lemma 2. Let E be a smooth normed linear space [,] be the semi-inner product
in the sense of Lumer which generates its norm and x, y two elements in E. Then
xLy (i.e, [y, x]=0) if and only if x |zy.

In virtue of this fact we can introduce the following concept.

Definition 2. Let E be a linear space, (,)s be a subinner product on E, G be a
proper linear subspace in E, x,€ E\ G and g,€G. The vector g, is called the
best approximation element ofx0 in Gin the sense of subinner
product or S-best approximation element of x,, for short, if
Xo—9go 1sG. We denote go€ g (x,).

The following simple characterization holds.

Proposition 1. Let E, (,)s, G, x, and g, be as above. Then g, P (x,) iff there
exists an element woe G 15 such that:
0)) Xo=4go+ Wo.

The proof is obvious from the definition of S-best approximation element
and we omit the details.
From the above proposition we have the following corollary.
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Corollary. I E, (,)s, G, xo and g, are as above, then the following statements
are equivalent :

(i) 2% (x,) contains at least one [at most one (a unique)] element;

(i) There exists at least one [at most one (a unique)] element g,€ G and at
least one [at most one (a unique)] element wye G 15 such that (1) holds.

The following result is important in the sequel.

Proposition 2. Let E, (,)s be as above and f be a non-zero linear functional on
E, xoe E\Ker (f) and g,eKer(f). Then the following statements are equivalent:

(i) 90 € Per(y (Xo);
(i) The following representation holds:
()] Sx)=f(xoXx, (xo _go)/(xo_go)g )s for all x€E,

where (xo—go)3 denotes (xo—go, Xo—do)s-

Proof. Let go€P%.(x,) and . put w,:=x,—go #0. Then wye
Ker (f)15. Since f(x)w,—f(wo)x € Ker (f) for all x € E, hence (f(x)wo—f(wo)X,
wo)s=0 what implies:

S(XNwg, wols=f(WoXx, wo)s for all xeE.

Because (w,)3#0, we obtain the desired representation.

_ Conversely, if (2) is valid and since f(x,) # 0, then x,—g, 1sKer(f),
1€, goegplfer(/)(xo)-
The next corollary is also valid.

Corollary. Let f and x, be as above. Then the following statements are
equivalent

() Ple(Xo) contains at least one [at most one (a unique)] element;

(ii) There exists at least one [at most one (a unique)] element g, € Ker (f) such
that the representation (2) holds.

By the use of Proposition2 we can prove the second characterization of
S-best approximation element.

Proposition 3. Let G be a linear subspace in E, (,)s be a subinner product on E,
xo€E\ G and g, € G. Then g,€ P%(x,) if and only if for all linear functional defined
on G ® Sp(x,) such that Ker(f)=G, the following representation holds:

(B)  S¥)=fxo)x, (Xo—o)/(Xo—go)3)s for all x&G @ Sp(x,).

The following result is valid too.

Corollary. Let G and x, be as above. Then P (x,) contains at least one [at
most one (a unique)] element if und only if for all linear functional defined on
G @ Sp(x,) such that Ker(f)=G there exists at least one [at most one (a unique)]
element g,e€ G such that (3) holds.
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3. Characterization of semitchebychefian, proximinal and
tchebychefian subspaces in the sense of subinner product

Firstly, we recall these concepts in the classic sense.

A proper linear subspace G in normed linear space E is called
proximinal [semitchebychefian (tchebychefian)inE
if for every x,€ E the set 2;(x,) contains at least one [at most one (a unique)]
element.

For some characterizations of proximinal [semitchebychefian (tchebychefian)]
subspaces in a normed space see the monography [7] and the recent papers [1] and
[3] where further references are given.

As in the case of normed spaces, we can introduce the following classes of
linear subspaces.

Definition 3. Let E be a linear space and (, ) be a subinner product on it. The
linear subspace G, G # E, will be called proximinal [semitchebychefian
(tchebychefian)] in the sense of subinner product, or S-proxi-
minal [S-semitchebychefian (S-tchebychefian)], for short, if 2§(x,)
contains at least one [at most one (a unique)] element for all x, in E.

The following theorem of characterization holds.

Theorem 1. Let G be a linear subspace in E and (,)s be a subinner product on
it. Then G is S-semitchebychefian [S-proximinal (S-tchebychefian)] if and only if for
all x € E there exists at most one [at least one (a unique)] element x' € G and at most
one [at least one (a unique)] element x"€G 15 so that:

4) x=x"+x",

and we denote that: E=GHG '’ [E=G+G 15 (E=G® G 15)).

The proof is obvious from the definition of semitchebychefian [proximinal
(tchebychefian)] linear subspaces in the sense of subinner product and from
Corollary of Proposition1. We shall omit the details.

The following proposition contains an example of S-proximinal linear
subspaces in linear spaces endowed with a subinner product.

Proposition4. Let E and (,)s be as above. Then every finite-dimensional linear
subspace in E is S-proximinal.

Proof. Let G, be a n-dimensional linear subspace in E and x,€E\ G,. Put
G,+1:=G,®D Sp(x,). Then G, can be regarded as a hyperplane in G,,,.

On the other hand, let {x,,..., x,+ } be a base in G, and x, €G,+, \ G, such
that {x,, x,,..., X+, } is also a base in G,,. We construct the vectors (as in the
case of inner product spaces):

e =X, [(x1)s, e2=X;—(X3, €1)s€1,..; Cps1=Xps1— Z (Xp+1, €)s€;.

i=1

It is easy to see that:

(ey, €y)s=(e3, €)s= ... =(ens+1, e,)s=0



Best Approximation in Linear Spaces Endowed with Subinner Product . 275

and since:
n

x,=(x;)s€1, X;=(x5, €;)s€;+€s,..., Xps1= iZ:l (Xn+1€;)s€;+€ns1s
we have {e,, e,,..., €,4+ } isa base in G,+, and {e,,..., e,+, } is also a base in G,.
Then (u, e,)s=0 for all ue G, and since e, =1, X+ U, with o€ K\ {0} and uoeG
we obtain: (u, xo—vo)s-O for all ueG,,, where vy :=—1/4, u€G,, ie,
Xo—Vo 15 G,, what is equivalent to v,€2g(x,) and the proposition is
proven.

Corollary. Let E and (,)s be as above. Then for all G a finite-dimensional linear
subspace in it, we have the decomposition:

) E=G+G 15,

The following theorem establish a connection between proximinal
[semitchebychefian (tchebychefian)] linear subspaces in the sense of subinner
product and the representation of linear functional on a linear space endowed
with a subinner product. :

Firstly, we prove the next lemma.

Lemma 3. Let H be a hyperplane containing the null element and (,)s be a
subinner product on it. Then H is S-proximinal if and only if there exists a nonzero
element u in E such that u | H. '

Proof. If H is S-proximinal and x,€ E\H then there exists an element
do€ H such that g,e 2§ (x,) and putting u :=x,—g, we have u |¢H and
u#0.

Conversely, assume that x,e E\H, u€E, u |¢H and u# 0 and let f
be a nonzero linear functional on X such that H=Ker(f). If we choose
Jo :=Xo—(f(x0)/f(wu) (f(u) # 0) so we have g,eKer(f) and since:

(§2 xo_go)s=(.f(xo)/f(u)),(y, u)s=0 for all yeH,

we deduce that g,e 23 (x,), i.e., H is S-proximinal.
Now, we can give the main result of this section.

Theorem 2. Let f be a nonzero linear functional on linear space E and (,)s be a
subinner product on it. Then the following statements are equivalent:

(i) Ker () is S-proximinal [S-semitchebychefian (S-tchebychefian)];

(ii) There exists at least one [at most one (a unique)] element u € E, (u;)s=1
such that the following representation holds:

©) S@)=f(u Xx, u;)s for all x in E.

Proof. “(i) — (ii)” a. Let Ker(f) be S-proximinal. Then by Lemma3 there
exists w, € E\Ker (f) such that w, | ¢Ker(f). By an argument similar to that
in the proof of Proposition2 we have:

S)=fWo )X, Wo/(Wo)3)s for all x in E.
Put u, :=w,/(W,)s, then we obtain the representation (6).
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“(ii) > (). a. Suppose that u,eE, (u;)s=1 and u, verifies (6). Then
u, |sKer(f) and by Lemma3 it follows that Ker(f) is S-proximinal.

“(i) — (ii)”. b. Assume that Ker(f) is S-semitchebychefian and suppose, by
absurd, that there exists two distinct elements u,, v, € E, (u;)s=(v,)s=1 such that
they satisfy (6). Then u,, v eKer(f) 1°. Now, let er\Ker([{ and put:

Yo :=x—f(x)us/ f(us) and yo :=x—f(x)v,/[f(vy).

Then f()’o)=f()’6)=0, i- €., Yo> y'oE Ker(_f)-
On the other hand, for all yeKer(f), we have

o, x—.)’o)s=(f(x)[f(“j»()’s “f)s=0

and a similar relation for y,. Consequently x—y,, x—yo |sKer(f) i.e,

Yo» Yo € Plex(n(Xo). Now, if we assume that y,=y, we derive uyfus)=v,/f(v,)
and since f(u;)=f(v,) one gets u,=v,. Thus y, # y, and since y,, yo € Piu(s (Xo)
we obtain a contradfi‘ction to the fact that Ker (f) is S-semitchebychefian and the
implication is proven.

“(ii) > (i)”. b. Assume that (6) holds for a unique element u € E, (u,)s=1 and
suppose, by absurd, that there exists x,€ E\Ker(f) and two distinct elements g,
and g in 2., ,(x,)- As above, we obtain:

)] () =/ xo X%, (xo—go)(xo—go)3)s for all x in E,
and a similar representation for go. Put:

uy :=(xo—go)(Xo—4go)s and v, :=(xo—go)/(xo—gbo)s-

Then (u,)s=(v,)s=1 and u,, v, satisfy (6). Now, if we assume that u, =v_,
we derive (Xo—go)/(Xo—7o)s=(Xo—g0)/(xo—go)s and since (xo—go)s=(x—ai)3s
(from (7)) we obtain g,=go. Consequently, there exists two distinct elements
u;, v,€E, (u;)s=(v,)s=1 and they satisfy (6), what produce a contradiction and
the proof is finished. .

“(i) «— (ii)". c. The statement: Ker(f) is S-tchebychefian iff there exists a
unique element u,€E, (u;)s=1 such that (6) holds, follows by the above
arguments.

The next corollary contains a characterization of S-proximinal [S-semi-
tchebychefian (S-tchebychefian)] linear subspaces in terms of linear functionals.

Corollary 1. let G be a linear subspace in linear space E, G # E and (,)5 be a
subinner product on it. Then the following statements are equivalent:

(i) G is S-proximinal [S-semitchebychefian (S-tchebychefian)];

(ii) For all x,€ E\G and for any f a nonzero linear functional on G @ Sp (x,)
such that Ker(f)=G, there exists at least one [at most one (a unique)] element
U, r€G D Sp(x,), (uxy,s)s=1 with the property:

JG)=f(usy (XX, sy ), Sor all xeG @ Sp(x,).

The proof follows by the previous theorem for the linear space
E,, :=G @ Sp(x,). We shall omit the details.

Corollary 2. Let E and (,)s be as above and G be a finite-dimensional linear
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subspace in E. Then for all nonzero linear functional on G there exists at least one
element ug, ; in G, (ug, r)s=1 such that:

SX)=f(ug, 1) (x, ug,s)s for all xeG.

Further on, we shall give some applications of the above results in the case of
smooth normed linear spaces.

4. Applications to smooth normed spaces

Let E be a linear space over real or complex number field K. A mapping [,] of
ExE into K is a semi-inner product in the sense of Lumer or
L-semi-inner-product, for short, if the following conditions (P1)—(P4) are
satisfied (see [S] or [4]):

(P1) [x, x]=0 for all xeE and [x, x]=0 implies x=0;

(P2) [Ax, y]=A[x, y] and [x, Ay]=1 [x, y] for all AeK and x, y in E;
P3) [x+y, z]l=[x, z]+[y, 2] for all x, y, z in E;
(P4) [x, yI*?<[x, x]ly, y] for all x, y in E.

It is easy to see that the mapping E € x — [x, x]'/>€ R, is a norm on E and if
E'is a normed space, then every L-semi-inner product on E which generates the
norm is of the form:

[x, YI=<J(y), x) for all x, y€eE,

where J is a section of normalized dual mapping [6]. It is also known that a
normed linear space E is smooth iff there exists a unique L-semi-inner product
which generates the norm or if and only if there exists a continuous
L-semi-inner product which generates the norm, i.e, a L-semi-inner
product satisfying condition:

lim Re[y, x+ty]=Re[y, x] for all x, ye E (see [4]).
t—=0

On the other hand, in a smooth normed space the Giles’ orthogonality is
equivalent to Birkhoff’s orthogonality, i.e.,

[y, x]=0 iff |x+Ay||=|x| for all AeK,

and since a L-semi-inner product is a subinner product, we have the following
results.

Theorem 3. Let E be a smooth normed space, [,] be the L-semi-inner product
which generates its norm, G be a nondense linear subspace in E, x,€ E\G and g,€G.
Then the following statements are equivalent:

(i) goePs(xo);

(i) There exists an element ghoe G :={yeE |[g, y]=0 for all geG} such
that:

t)] Xo=go+4go;
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(iii) For all linear functional fe(G @ Sp(x,))* such that G=Ker(f) the
Jfollowing representation holds:

©)  S)=Ix, f(x0) (xo0—go)/Ixo—Go 1?1 for all xeG® Sp (Xo)-
The proof is obvious from Proposition 1 and Proposition 3 and we omit it.

Corollary. Let E, G, x, and [,] be as above. Then the following statements are
equivalent :

(i) Pg(xo) contains at least one [at most one (a unique)] element;

(i) There exists at least one [at most one (a unique)] element g, in G and at
least one [at most one (a unique)] element g in G such that (8) holds;

(i) For all linear and continuous functional f defined on G @ Sp (x,) such that
Ker (f) =G there exists at least one [at most one (a unique)] element g, € G with the
property (9).

Finally, we have:

Theorem 4. Let G be a [(closed)] linear subspace in smooth normed space E
(G # E). Then the following sentences are equivalent : .

(i) G is semitchebychefian [proximinal (tchebychefian)];

(ii) The following decomposition holds:

E=GHEG" [E=G+G(E=G® G~));

(iii) For all xo€ E\G and for any f a nonzero continuous linear functional on
G @ Sp(x,) such that Ker (f)=G, there exists at most one [at least one (a unique)]
element Usy, r€G D Sp(Xo), llux,, s ll=1 with the property that:

Sx)=f(uxy, r)[%, uxy, r] for all xe G D Sp(x,).
The proof follows by Theorem 1 and Theorem 2 and we shall omit the details.

References

1. S. S. Dragomir. A Characterization of Best Approximation Element in Real Normed Linear
Spaces (Romanian). Stud. Cerc. Mat., 36, 1987, 497-506.

2. S.S.Dragomir. Linear and Continuous Functionals on Complete R-Semi-inner product Spaces
(I), (IL. Itin. Sem. on Func. Eq., Approx. Conv., Cluj, 1987, 127-134; 1988, 163-168.

3. S. S. Dragomir. Representation of Continuous Linear Functionals on Smooth Normed Linear
Spaces. L'’Anal. Num. Théor. L’Approx. 17, 1988, 125-132.

4. J. R. Giles. Classes of Semi-Inner-Product Spaces. Trans. Amer. Math. Soc., 129, 1867, 436-446.

5. G. Lumer. Semi-Inner-Product Spaces. Trans Amer. Math. Soc., 100, 1961, 29-43.

6. I. Rosca. Semi-Produits Scalaires et Represéntation du Type Rxesz pour les Fonctionnélles
Linéaires et Bornées. C. R. Acad. Sci. Paris, 283(19), 1976.

7. 1. Singer. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
(Romanian). Ed. Acad., Bucuresti, 1967.

8. R. A69Tap1a A Characterization of Inner Product Spaces. Proc. Amer. Math. Soc., 41, 1973,
569-574.

Strada Trandafirilor 60 . Received 04.03. 1990
Bl.34 Sc. D Ap.9

1600 Bdile Herculane

Jud. Cara;-Severm

ROMAN



