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Absolute Summability Factors of Infinite Series
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Presented by P. Kenderov

In this paper a general theorem on ¢-|C, 1|, summability factors has been proved. Also this
theorem includes some known results.

1. Introduction

Let Za, be a given infinite series with partial sums (s,). By u, we denote the
n-th (C, 1) mean of the sequence (s,). The series Za, is said to be summable |C, 1],
k=1, if (see [S))

(1.1) Z n* Yu,—u,—4|F<o0.

n=1

Let (¢,) be a sequence of complex numbers. The series Za, is said to be summable
o—IC.1],, k21, if (see [1])

(1.2) T |@n(y—tp—1)l < 0.
n=1
If we take ¢@,=n'"1™ then ¢—|C, 1), summability is the same as |C, 1],
summability. A sequence (4,) is said to be convex if A?4,>0 for every positive
integer n, where A24,=A(AA,) and Ad,=4,—A,+;.
2. H. Bor [3] proved the following theorem.

Theorem A. Let
/)
(2.1) A%2,20, 2‘.;"<oo.
If there exists an £>0 such that the sequence (n*~*|@,*) is non-increasing and

22 z v *|p,s,[*=0 (logny,) as n— oo,

v=1

where (y,) is a positive non-decreasing sequence such that
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(2.3) ny,lognA(1/y,)=0(1) as n— oo,
then the series Xa,A,(y,)” " is summable ¢—|C,1]|,, k=1.
3. The aim of this paper is to prove the following theorem.

Theorem. Let

3.1) i,=o(1) and X vlogv|A%,|=0(1) as n— co.
v=1
lk

If there exists an ¢>0 such that the sequence (n*"*|o,|*) is non-increasing and

(3.2)

nNMs

v ¥|o,t,*=0(logny,) as n — oo,

v=1

where (y,) is as in Theorem A and (t,) is the n-th (C, 1) mean of the sequence (na,),
then the series Xa,A,(y,)”" is summable ¢—|C,1|,, k=1.

It is well known (see [4], [7], [9]) that (2.1) implies (3.1). It can also be easily
shown that (2.2) implies (3.2). However, the converse of these implications need
not be true.

4. Proof of the theorem. Let u, and ¢, be n-th Cesaro means of order 1
of the series Za, and of the sequence (na,), respectively. But since t,=n(u,—u,-)
(see [6)), it is enough to show that

@.1) T n*g, T, <o,
n=1
where
(4.2) T,=(n+1)"' £ va,4,(,)" "
v=1

Now, applying Abel’s transformation to the sum (4.2), we get

n—1 n—1
T,=(n+1)"" £ A4+, @,) " +0+1)7" T Auy AQ/y, )Xo+ 1),

v=1 v=1
Aty (7,) 1 =Tp 1+ Ty 2+ Th, 3, say.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

4.3) E n*e, T, [*<owo, for r=1, 2, 3.
n=1
Now, applying Holder’s inequality, we have that
m+1 m+1
Z 074, Taalt= Z n7*lp,(n+1)7*
n=2 n=2
m+1
= T nHn+ 1)t o,

n=2

k

n—1
Z A, (v+1),(1/y,)

v=

n—1 k
= AL/,
1

v=
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m+1 n—1 k
=0(1) X 'l_z"lfpnl"{ z v.lAiul(l/V.,)ltul}

v=1

n=1
m+1 1 n—1 . ln-l k-1
=0(1) £ ~m|¢..l"{ z vIAi.,l(l/v.,)ltvI"}X{— z vIAl.,I(l/v.,)}
n=2"0 v=1 ny,=1
m . g m+1 '(pnlk
=0(1) Z v|A4I(1/p) It,I" 2 =55
v=1 n=v+ln
m _ [} dx m _
=0(]) z lelvl(l/yv)ltvlkvz k|(pv|kj;_i'+_¢=0(l) z levil/lyv)v kl(pntvlk
v=1 v v=1
m-—1 1 v 1 m
=0(1) £ A{UIA}.DI—} P p"‘l(p‘,tpl"+0(1)m|Alm|—. T v ke, ¢,k
v=1 ) p=1 Ym v=1-
m-—1 1
=0(1) = A{lele;—}y"logv+0(l)m|Aim|logm
v=1 v :

m—1

m-—1
=0(1) £ v|A%4,|logv+0(1) T v|Adysy]y,A(1/y,)logo
=1

v

v=1
m—1
+0(1) T |Ad,+1|logv+0O(1)m|AA,|logm.
v=1
Since vy, A(1/y,)logv=0(1), by (2.3), we have that
m+1 m—1 m—1
T n kY, T, [*=0(1) T v|A%4,|logv+0(1) T |Ad,.;|
n=2 v=1 v=1
m—1
+0(1) T |Ad,+,|logv+O0(1)m|AA,|logm=0(1) as m — o,
v=1
by virtue of the hypotheses of the theorem.
Again
m+1 m+1 n—1 v+l k
L n¥g, T, "= Z n"*(n+1)7*|g,*| = i.,nA(l/vv)—v—vt.,
n=2 n=2 v=1
m+1 n—1 k
=0(1) X n'z"I(P..I"{ z Il.,ﬂlvlt.,IA(l/v.,)}'
v=1

n=2

, by (2.3), as in T, ; we have that

Since vA(1/y,)=0(1)

y,logv
mgln_*kp T, ,|*=0(1) mgln—ul(p |k{"£:1 [Ao+ 1112, }k
n=2 nom2 n=2 " =1 Yolog(v+1)

m+1 1 n—1 A n—1 A k—1
o rie,s Berily p {175 el
= n Y n,= Yo

n=2 v=1 v
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=0(1) T Mossl v ¢t Ik=0(1) T v ¢, ¥ Z A(—M"HI)
v=1 v v=1 R=iv L
_ - [Ay+1] n-k k_ |2o+1]
=0(1) T |A(ZZE)| = n*g,t,k=0(1) > A(—— . —)|7,logv
v=1 v n=1 v=1 v

=0(1) Z |A4y+,|logv+0(1) z 140+ 217, A(1/7,)log v
v=1 v=1
. o Ao+l
=0(1) £ |Ad,+,|logv+0(1) T ——
v=1 v=1 .

Z Aldn+2l

n=v

1
IAlu+1llogv+0(1) z -

v=1
=0(1) > |AZ,+1]logv+0(1) = IAlu+z| E 5

v=1 v=1

=0(1)

v

IIM8

—0(1) £ |Ady+,|log(v-+1)+0(1) % (Al llog(v+2).

v=1 v=1

Since X v|A%i,|logv<oco, by hypothesis, we have that

v=1

m+1
Z n7*@,[*IT,, 2[*=0(1) as m - co.
n=2

Finally, as in T, ,, we get that

m _ m l
T n*|g, T, 3*=0(1) T I—"—'n"‘|<p,,t,,|‘*=0(1) as m — oo.

n=1 n=1 n

Therefore, we get

n*lg, T, [*=0(1) as m - oo, for r=1, 2, 3.
1

I M 3

This completes the proof of the theorem.

Special cases:
1) If we take y,=1 in our theorem, then we get a theorem of H. Bor [2].

2) If we take y,=1, e=1 and @,=n'"* ", then we obtain a theorem due to
S. M. Mazhar [8].

3) Finally, if we take ¢e=1 and ¢,=n
due to M. Ali Sarigol [10].

—-k—1 .
1=%"", in our theorem, then we get a result
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