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In this paper we give a characterization of relatively complete extensions of Boolean algebras
where each ultrafilter on subalgebra has at most two extensions to an ultrafilter of big algebra.

Let C be a subalgebra of A. We say that qe Ult C splits in A if there are
distinct p, p’ € Ult A which extend pi.e. pn C=p'n C=gq. Let C and B be Boolean
algebras. C is relatively complete (rc) subalgebra of B if for each be B there is a
greatest element ce C such that c<b. We denote that element by prcb. We also
denote by ind.b=(pr (b)+pr(—Db)). It is a clopen set in UltC consisting of points
that have at least one extension to an ultrafilter of B containg a, and at least one
containg —a. B is a 2-extension of C if every ultrafilter in UltC has at most two
extensions to an ultrafilter on B. B is a projective extension of C if there exists a
free Boolean algebra F and mappings e: B—+C@® F and q: C® F — B so that
goe=idy and e|C=q| C=id|C. If F is 2% then we will say that it is a projective
extension by 4. Finally, B is a rcs-extension of C if B is a relatively complete
simple extension-of C, i. e. there is ae B such that 3=C(a) and C is a relatively
complete subalgebra of B.

In the following proposition we list some known facts. Proofs could be found
in (1).

Proposition. Let B be a rc extension of C.
i) If B is a rcs-extension of C then it is a- 2-extension.
ii) Let U={qeUltC|q splits in B}. Then U=U{s(j)|jeJ} where s:C—
ClopUItC is the Stone isomorphism. In particular U is open in UltC.
iii) J={indp, (x)|x€ B} is an ideal in C, in fact the ideal dual to UeUltC.
iv) Let a, B, y be pairwise disjoint elements of C such that a+B+y=1 and ael.
Assume xe€ A and indp(x)Sa. Then there is some ze€ A such that indp(z)=a,
pr(z)=4, pr(—2z)=y and xeC(2).
v) Let indp(a)=C. Then C(a)=C D 4.
vi) Let C be a Boolean algebra and a.€ C. There exists an rcs extension B=C(a) of
C such that ind p(a)=a.
vii) If be C(a) then indpb<indpa and the equality holds iff C(b)=C/(a).
viii) If C(a) and C (b) are two rcs extensions of C such that indp (a)=indp (b) then
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there is an isomorphism f:C(aj— C(b) such that f|C=id. and f(a)=D»b.
ix) If B is an rc2-extension of C then U% is clopen.
x) Canonical mapping f:UitB — UItC is open.

Proposition 2. Let C<,,B. Then
(*) Va, beB (indpb=<indpa = C(b) = C(a)).

Proof. The implication from right to left is just proposition 1 (vii). Let us
prove the other direction. Suppose indp(a) <indp (b), and let ¢ : Ult C(a) - Ult C
be the canonical mapping. We claim that ¢ (indp¢ () (b)) N indp (a) =@ . Really, if it
was not the case then there would exist pe Ult C such that pe ¢ (indp¢ (b)) N
indp(a). peindp(a) hence p splits in C(a) and since each of these extensions
belongs to ind. ) (b), they split in C(a, b). Henceforth p would have at least four
extensions to C (@, b) and thercfore in B, contrary to our assumption. This
contradiction proves our claim. Since ¢ (indp¢ () (b)) < indp (b) < indp (a), we have
@ (indp¢ (o) (b)) =0, hence indpc () (b)=0@. That means be C(a) i. e. C(a) = C(b).

Corollary. Let C< ,B. B is a simple extension of C iff U2 is clopen.

Proof. One direction is Proposition 1(ix). For the other one, if g is an
element from B such that indp(a)=UZ%, then for every beB, we have
indp (b) <indp(a) hence be C(a).

(*) property of rc2-extensions actually characterizes them among rc
extensions:

Proposition 3. Let B be an rc2-extension of C. Then it is an rc2 extension iff it
satisfies (¥*).

Proof. Let B satisfy (*). Let peUZ. Then peindp(a) for some aeB. Let
Py» P, be the extensions of p to ultrafilters of B so that aep,, —aep,. We want to
prove that they are the only two extensions of p to B. Suppose to the contrary that
there is another one g. Wlog we can suppose that aeq (switch a and —a
otherwise). Since g#p, there exist be B such that beq and —bep,. Let ce B be
an element such that indp(c)=indp(a)+indp(b). Then by (*) a, be C(c). Then
pyNC(c), gn T(c), p,nC(c) would be three different extensions of p to an
ultrafilter of C(c) contrary to Proposition 1 (i).

There is another characterization of rcs extensions:

Proposition 4. B is an rcs extension of C iff B is a projective extension of C by 4.

Proof. («) Let e:B—-C+4 and q:C+4— B so that gce=id, and
e|C=q|C=id|C. Then B is a simple extension as a homomorphic image of
C®4. Also, since Cisrcin C® 4, e(C)=C is rc in e(B), hence C is rc in B (e is
monomorphism).

(—) Let B=C(a). Let u be a generator of 4 and let g| C=id; and q(u)=a.
Then q has a unique extension to a homomorphism q :C @4 — B. Let a=pra
and y=indp.(a). If we define e|C=id. and e(a)=a+yu then by Sikorsky
extension criterion it could be extended to a homomorphism e :B—+ C @ 4.e, q
obviously satisfy conditions for projective extenson.
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In (2) there were given examples of 2-extensions which are not simple. The
following example shows that situation remains the same even for projective
extensions.

Example. Let C= F, free Boolean algebra on w generators a,, a,,..., and
A=F_(a)= F,®4. Let A,={F,uU{aa,,..., aa,}» be a subalgebra of A. Then
B=U {4, |new} is a subalgebra of 4 and a projective extension of C ({4, |ne w}
is its skeleton cf. [1]). As a subalgebra of A it is an rc2-extension of C. It is not
simple since UZ=U {aa,|new} is not clopen (it does not have finite subcover
since aa, s are independent).

It is interesting that being simple extension is not a hereditary property
among the extensions of a Boolean algebra, and being 2-extension is hereditary.
The following theorem explains the situation.

Theorem 1. B is an rc2-extension of C iff there exists an embedding
c:B— C@®4 such that e|C=id,.

Proof. Let be B and e, : C(b) - C @ 4 an embedding from Proposition 4.
We claim that for C (b) = C(c) we have e, =e¢_| C (b). Since they both agree on C, it
is enough to check that they have the same value at b. Wlog we can suppose that
b=c (b partitions into a part below ¢ and a part below c¢') Let b=dc for eC.
e (b)=0(a, +yu)=0a +dyu, and e,(b)=a,+7,u. But a,=6a, and also B,=45p,
(projections are homomorphisms), hence because of a+f+y=1, we also have
¥, =07, So we have e (b)=e,(b). We also have that for b,,..., b,eB, and b=V
{By|k=n} C(b)<C(b), k=n. Now we have actually proved that {(C(d),
/)| be B} is a directed system. Let (D, f) be its limit. Since for every be B be C(b)
we have D=B. f is the desired monomorphism from B into C(a). This
monomorphism actually maps B into a subalgebra C(d) of C(a) for any deC (a)
such that indp(d) > UZ.

Corollary. Let C<,B. B is an rc2-extension of C iff it is a subalgebra of an
rcs-extension of C.
Using this theorem we could give an easier proof of Theorem 3 in (2):

Theorem 2. Let B be a complete rc2-extension of C. Then B is an rcs-extension
of C.

Proof. Let a=clUZ. Since C is complete (as an rc subalgebra of a complete
one) a is clopen in C. Then we can suppose that B < C(a) for indp (a)=a. We will
prove that B=C (a). Since B is complete it is rc in C(a). If a€ B then indp,(a) #0.
Now we have for canonical (open) projection f: UltB — UltC that f(indp,(a)) is a
nonempty open set in UltC. On the other hand it is a subset of indp.(a)— U2 i. e.
clU 2\ UZ Contradiction. Hence a€B, i. e. B=C(a).

It seems that these are the minimal conditions that reduce rc2-extensions to
rcs-extensions. It is fairly easy to make necessary counterexamples for weaker
conditions.
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