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Simultaneous Approximation by nth Degree
Polynomial of the Function and its Derivatives
on a set of n + 2 points

Hussain Al-Juboury', Pencho G. Marinovt

Presented by Bl. Sendov

The problem of finding, simultaneously, best, one-sided (Hausdorﬂ'.) uniform approxima-
tion for a given function f and its derivatives is considered. An algorithm to calculate best
app{‘oximation is given together with some applications that interpret the main idea of this
work.

1.Introduction

Construction of n th degree polynomial of best uniform approximation for
a given function on a set of n + 2 points is an important step in the well-
known Remes algorithm for approximate determination of a polynomial of best
uniform approximation on a finite interval [1].

This discrete problem has a direct solution for the functions defined at
n + 2 points on an interval or on the complex plane [1], [2]. In [3] the following
problem is considered:

Lét the function f € C(‘.;_b]* i.e. f has a bounded first derivative in the

interval [a, b]. Denote by

H, = {P : P(z) = Zaiz‘} y U= {ui}:=| " V= {v;}:zl ,
=0
Uclab), VClab], r+s=n+2, Ilet
(1) pUf)= jinf p(f,P)
where

(2)  p(f, P) = max {lpea,;tlf(z)— P(z)|, 87! t;\ea‘;tlf'(r) - P’(z)l} .
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The number p( f) is called best approximation and the polynomial P* € H,
that satisfies p(f) = p(f, P*) is a polynomial of best approximation. It is proved
in [3] that if the points of U and V are ordered as

a< << - <Ly <up< <, Yy <<, <b,

then the polynomial of best approximation is unique. And convenient algorithm
for determination of this polynomial is given. >
The problem can be generalized in the following way:
Let X* = {22}, , s = 0,1,..., N, are point sets such that X* C [a,b],
ﬁ—.o N, = n + 2, provided that, analogous to (1) and (2),

p(f, P)= max {7 - PO},

(3) 1<s<N
pUf) = jnf p(LP) P =p(fPY),

where || f||x- is a non-negative number, which is a measure of deviation of the
function f from zero on the set X°.
For example we can take ||fllx: = sup;ex.|f(z)| and s = 0,1 is exactly

the case considered above (with g = 1).

Theorem 1.. [f the points X*, s =0,1,..., N, are ordered as

N N-1 N-1 -
a< zj <...<_—;’;,~S;tl <--<zp" <"'<31P.SI(I’<"’<1?V.

-y
N-1

(4)
1 1 N
Szpp < "<TN, S <IN, STPus <---<zﬁ~5b,

then there erists a unique solution of (3) for

| fllx- = sup |f(2)], s=0,1,...,N.
r€X*

Proof. Let P € H,, P(x) = Y=o a;z', be the polynémial of best approx-
imation. Then its coefficients must satisfy the linear system, for the sake of
simplicity we shall write p(f) = p:

eNp+ PN (zN) = fN(2]), i=1,..., Py,
eN-1p 4 PIN-D(N=Y) = fIN-DN-Y) i=1,..., Py,
(5) 9+ P(z%) = f(2?), i=1,..., P,

-.
I

eN-1p4 PIN=V)(zN-Y) = fIN-D(ZN=Y), i=Py_y+ 1, NNoqs

eNp 4+ PN (2N = s (2N), i=Py+1,....Nn,
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where ¢! = sgn (f(*)(z!) - P)(z!)), t=0,1,...,N.
If D;, i=1,2,...,n+ 2, are the minors of the first column of the deter-
minant D in (5), then

DyfN () = Daf M (z)) + ... + (=1)"*' Dpya f¥N(2R )
Dyey — Daey + ... + (—1)' Dyyaely )

It is clear that p takes its minimum if

e‘v = sgn D,, 8-?’ = —sgnD,, ... £%~ = (=1)"*'sgn D,

On the other hand if D; # 0 for i = 1,2,...,n+ 2, then the polynomial of best
approximation is unique. Indeed, let D; = 0 then £V can be chosen arbitrarily
in [—1,1] and p does not change its value.

Let us show that D; # 0, i=1,2,...,n+ 2. Suppose for example that
D[ = 0, i.e.

o 0 --- 0 - (n_:%m(:}zv)"-’v
0 0 - 0 .ee =N, )N
] "! p :—l n—-N-1
0 0 e (N—l). R m(.‘tl )
D, = 0 1 .o (N—I)(I;,‘)N"z o n(z;,‘)n—l =0
1 2? s (z?)N“ - (1‘?)"
i z?v" ot (’rg’o)N-l Tt (:?V.)n
0 0 .- 0 - P £ pal
There exists n + |1 numbers b;, i =0,1,...,n, 31, |b;| > 0, such that
+ n
(6) D bl =0
i=0

where d! is the (i + 1)th column of the matrix Dy. Equality (6) gives that the
polynomial g(z) = 3" b,z* has the properties:

1. q(z) has Np zeros in [z, ], i.e. ¢(z) has No — 1 zeros in (29, z%. )

2. ¢/(z) has Ny + No — 1 zeros in [z],z}), ], i.e. ¢"(z) has Ny + No — 2 zeros in
(z}. 2N, )

3. ¢"(z) has N3+ Ny + No—2 zeros in [z], 2}, ], i.e. ¢"(z) has Na+ N1+ No—3
zeros in (I?,I?v,);

I‘i.‘.q(“”(:) has 2;"_’__0 Ni = (N -=1) = n+ 1~ N different zeros in (a,b);
Since ¢N) € H,_n, we get ¢!N)(z) = 0. The last quality leads to g(z) = 0,
which contradicts the inequality 3""_, |bi| > 0. And the theorem is proved. =
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2. One-sided Hausdorff case.

Consider the case:

(M ps, P) = max {max ha (2, P 1), 67 maxlf'(a) - P(a)l}

where U = {u;}_y, V = {vi}iey, UClabl, VClab] r+s=n+2,

ha (2, P(z); f) = “mizeljmax {a"lz —-&l, In—- P(:r:)l} s a>0

)
and f is the completed graph of the function f [4], defined as
f={nF: feF, FCF}.

F consists of all bounded and closed point sets on the plane that are convex
with respect to the y coordinate and their projections on the real axes coincide
with the imterval [a,b].

Definition (7) is meaningful for functions with jumps. For example, it is
more natural the function sgn(z) in [—1, 1] to be approximated w.r.t. definition
(7) than definition (2), choosing the points of the set V' to lie at the both ends
of the interval [—1,1].

With respect to (7) it is evident what is best approximation, now recall the
one-sided approximation, and the polynomial of best one-sided approximation.

The polynomial P € H, of best one-sided approximation must satisfy

(B=1)

8 ho(zi, P(zi);i f)=p, €U, i=12...,r
(8) |f'(zi) = P(zi)l=p, zi€V, i=12

where

p=pf)=p(f,P)= qien,{_p(f.q)-

For | f(z:) — P(zi)| = ha(zi, P(z:); f)+ 6, 620, i=1,2,...,r, the
system (8) can be written as

9 f(zi) = Px)|l=p+6i, z;€U, i=]1
©) f'(zi) = P'(zi)l =p, eV, i=1

If we know the numbers §;, then the polynomial P can be determined from
the system

(10) f(zi) = P(zi) = eilp+ &), ei=x1, z€U, i
f'(zi) = P'(zi) = €ip, ei==%1, z,€V, i
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The matrix of the system (10) is the same matrix as of the system (5).
Consider now a simple example similar to the one considered in [3].

Let U = {z3,23}, V = {z],z5.23}, a<z}<z2<z3<7;<z;<band
keeping the notation D; for the minors of the first column of the determinant
of (10), then

_ Dif'(z1) — Da(f(z2) —€282) + Ds(f(23) —e383) — Duf'(z4) + Dsf'(zs)
= Dyey — Daez + Dies — Dieq + Dses

Evidently, p takes its minimum if ¢; = (=1)"*'sgn(D;) and if all D; # 0,
the polynomial of best approximation is unique. In the case when

] k +2
U = {z; i=k410 V= {3t‘}i=| U {z: ?=l+1 ’
L2 < - <Zp S Tpp1 < <L T4 < - < T2 < b,

(1)

it is proved in [3] that all D # 0, and the equalities

€ = (—1)itk, i=1,2,...,k,

(12) gi=(=1)"*1 i=k+1,k+2,...,n42.

determine all ;.
To find the polynomial of best approximation by the system (10) it remains
to obtain the values of §;.

3. Numerical algorithm and convergence.

Let the points of U and V be given as in (11). Then the solution of system
(10) can be obtaineed by the following algorithm:

Step 1: Set EPS, Smaxy, =0 and §'=0, i=k+1,...,1;
Step 2: Solve the linear system

gip® + P (z:) = f'(zi), i=1,...,k
(13) €p® + P (z;) = f(zi)—€i8?, i=k+1,...,1
€p® + P (z;) = fl(z)), i=l+1,...,n+2

with respect to the coefficients of the polynomial P* € H, and p*;
Step 3: Set §*' = |f(z:) — P*(zi)] — h*(A% f), i = k+ 1,...,1, where
AL = (zi, P*(20), h(AL]) = halzis Pz} f) i=k+1,...0k;
Step 4: If |p**! — p*’| < EPS or s > Spar then P**! is the polynomial of
best approximation. Otherwise, set s = s + 1 and go to step 2.

Since &; = sgn(f(z:)— P*(z;)), i=k+1,...,1, s=0,1,2,..., the linear
system (13) takes the form (for s = 1,2,...):
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&ip' + Timedajzli™! = fi(2), i=1.... k
(14) gip’ + Lieoayl = PN+ b TN AT ), i=k40, 0
€' + YiodalzlT = f(xi), i=l+1,...,n4+2,

with unknowns aj, ..., a}, p°. The determinant D of the system (14) is

&1 0 1 2z, R n.’t?—l
Ek 0 1 2z cee nz:—l
Ek+1 1 T k41 -’l‘i+| =5 z’kf_H
D = :
e 1z z} zp
ci+1 O 1 2zi41 - nz;':]‘
Ent2 O 1 2Zn42 - BZRL)

and if D; are the minors of first column, then:
1. D = M2 (—1)*e,D; = 7272 |Di|l. This property follows from the

fact that ¢; = (—1)"*'sgn(D;);
2. If g€ H,, then

k { n+2
S (-D)*GEID + Y (1) az)Di + 0 (=)™ ¢(z)Di = o.
=1 i=k+1 i=l+1

The proof uses the fact that the vector
(q'('tl )v sy q’(zk)v ‘l(”k+l )* R AR | q(zl)' q’(‘tl+| )v ceey f]'(.t,,+2))

can be represented as a linear combination of the 2nd, 3rd, ..., and (n + 2)nd
column of D;

l i n
3ot = 7)-{ L Bp DNl + Ticker hI7'IDI + A HP’_!|[)i|} ,

Proof. The proof follows from the properties 1, 2 and the representation of
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the right side of (14) in the form

[Ellf'(zl) — PV () + PV () ekl f(zk) = PPV ()] + PPV (7)),
exprhiy) + P ‘(1k+l)9 cahiTt + P2,

el f(zier) = PV (@)l + PV (@),

++Ensal M(Znsa) - P‘"'(rnn)l + PV (2a42)]

= [sm"‘ + PV(zy), - e+ PV (24),

exnrhi) + PN (zeg)s o @k + P (),

a41p” + PV (zig)e o v Eng2p® Tt + P'—"(Inn)];

4. The sequence {P*};2, is uniformly bounded.
Proof. From property 2 we have

n+2

5:( 1)+ f'(2:)Ds + }:( —1)* f(z)Di + Y (1) (i) D
i=1 i=k+1 i=l+1
k {
(15) = Y _(-)'* Dieilf'(zi) - P*'(=)l + 3" (=)' Dicilf(zi) - P* ()]
i=1 i=k+1
n+2+ )
+ X (=)' Disilf (2:) - P()
i=l41

i

From (14) and (15) we obtain

k i
STIDIf (=) = Pl + Y 1Dl If(2i) = P (=)
i=] i=k41
n+2 *
(16)  + X IDilIf(z) = P (xa)

=4l

nt2
=(- l)“"ZID.I!'(t.) + (-1 Z IDil f(=i) + (=1 D 1Dl f'(23) .-
i=k+41 i=l4l

Since all D; # 0, we have from (16) that the numbers
{(P(z;):i=1,....kJd+1,....n+2} and (P*(z;):i=k+1,...,1} are
uniformly bounded Since | — k — 1 > 0 the property follows;
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5. 1If h!™' < p® then h!™' < hf < p®, and
|f(zi) = PN (2] < |f(zi) = P*(2i)| .
otherwise, the condition h!~' > p* leads h!™' > h? > p*, and
If(z:i) = PNz 2 |f(2:) = P*(2i)|.
To prove this, from (14) we have

&ilf(zi) = P(zi)l = f(z:) = P(z:) = f(2i) = PPN (zi) = ei(h2™" = p)
gilf(z:i) = PN (zi)| — (b7 = p%),

1

ie. |f(zi) = P*(zi)| = |f(zi) = P~ (zi)l = (A7} = p*).

The proof follows from the last equality and the following property of the
one-sided Hausdorfl distance:
If Ay(zo,y1), A2(z0,y2) satisfy-the condition |y1 — f(Zo)| > |y2 — f(z0)| then

ha(Alv f) 2> ha(A29 .f);

6. Let
M* = max h{, m® = inf A}
k+1<i<t k+1<igt

Then the sequence {M*};2, ( or {m*}J2, ) is monotonically increasing (de-

=0
creasing) and :
ma—l < P' < Mn-l .

The proof follows from properties 1, 3, 5 by induction on s, taking into
account that for s = 0, m® < p? is valid and setting M® > p° j.e.

m® < p® < M°.

From here we get m°® < p! '<i' MP®. Suppose m*~! < p* < M*=1 then, if
m*~1' = h3~' < p* < h4~' < M*~!, property 5 gives

ms—l - h:-l S h: _<_ p' S h:‘ S h::l = Ma—l ,
and applying the representation from property 3 the result is
ml S pl+l S MO;

7. Hlimgeoo m®* = m*, limsoo M®* = M*, then m* and M* are cluster
points of the sequence {p*};o, -
Proof. Let i € [k + 1,1] is such that A}, = M for infinitely many s, i.e.,
there exists a subsequence {h]* }::o , such that hf* = M*. Let I, € (s,_y,s,]
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be the biggest index such that p° < hf;' for s € (I,,s,). By property 5 it is
obvious

(17) pl 2 hls 2 At > > Rl = M > MT,

From property 6, p'» < M'- and (17) yield
(18) M* < plv < Mb-

There exist two cases:
a. such [/, are infinitely many, i.e. from (18) we get

. lim pl» = M*.

=00
b. such /, are finite numbers. Then there exists sg, where s > sg such that
the inequality p* < hfn"' holds.
From the equality

P.(xlo)— P (zi,) = Eu(h.-l -p°)

we obtain
P (z;,) — P**(z;,) = €, Z(h* )

k"lo
or

|P* (2i,) — P (23,)] = Z':(hf;‘ -5

k=so

By property 4 the polynomials { P} are uniformly bounded, i.e.

(19) (W - g < 2,

k‘lo

for arbitrary s; > so + 1.
Inequality (19), for the series with positive numbers, shows that this series
converges and hence,

Jim (B = = 0.

Since

lim Al = lim M* = M~

V=00 Y0
The proof that m* is a cluster pomt of the sequence {p*}52, is similar;
8. The sequence {hf}2, 1=k +1,...,1, satisfy

s=0

im h! = M* =m*, i=k+1,...,1.

8O0
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Proof. Let lim,_ p* = M*. The corresponding sequence of polynomials
{P’v}u—o = Pv P € l,". Fol'

n+2
o = D~ (ZP"'-‘IDH’ 2 h= 7D+ S p "'IDI)

i=k+1 i=l+1

when g — oo we get

n+2
(20) M = (Z M*|D;| + Z ha(zi, P(zi)i Dl + D M~ IDI)
=] i=k+1 1={+1

For h;™ < M*w it follows that h,(z, P(z:); f) < M*, but equality (20)
implies h (z,, P(z;); f) = M*. The polynomial P satisfies

K, l+ l,....,n+2,

1

l
) kl+l ..,n+2,

|f'(zi) = P'(x:)] = M*
ho(zi, P(z;); f) = M*
sgn (f(z;) — P(z)) = ¢,
sgn (f'(zi) — P'(z)) = &

i.e. it is the polynomial of best approximation. So we have p(f) = M*. The
proof of p(f) = m* is similar, thus we have M* = m"*.
Using this and the inequalities

L, e~
:
++
.
P

—

m* < h] < M?*, i=k+1,...,1, s=0,1,2,...,

the result is

m® = lim m* < lim A} < lim M* = M*,

8—=00 §—+00 3 —=00

lim kY =p(f), i=k41,. 0

consequently, we can say that every cluster point of the sequence {p*}20s
P? € H,, is the polynomial of best approximation.
Indeed, let

lim P =P, P+ €eH,, PeH,.

YO0

Then
Jlim b = ha(zi, P(2)); f),

where
ho(ijp(l'.‘);f)=P(f), 1=k+l..l,

i.e. P is the polynomial of best approximation.
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9. If the function f satisfies Lipschitz condition
If(z1) = f(z2)] £ Llz1 — zal,

then
| — (N < al 2(M"-m°) i=k+1 l
i — P < 1 +al ’ = -
Proof. We make use of the property
21) Ikt =i~ 2 |P(zi) = PNzl - w(fialhf - AiTY)
> |Pzi)- P*VYzi)] — aLlhf-hR"Y,
where

w(f;8)= sup |f(z)- f(¥)l-
lr—yl<s
From (20) we have
(14 aL)lhf = b7 2 |P*(zi) - PNzl = |p° - B{7'.
If p*<h!™', then p*<hi<hi™' and
(1+al) (Ix:“l - h?) > h'g-l -0,

alLh™! p° alLM*! Pt
22 h?! < !
(22) v l+aL+l+oL -~ 14+al 1+al
On the other hand, since p* < hf, then from property 6 we have
alm*-! P‘
3 h? >
(23) T 14al * 1+al

Analogously, if h!™' < p*, then inequalities (22) and (23) are also valid.
And they give

alm*! p* aLM*! P’
< h? <
T+al T T+aL =™ = T¥aL " T+al’
from which
alm*! p* alM*! P’

s F
. < .
e M® < T5or Y 1veL

<
14+ al l+al —

(24) M* —m* < l:l‘;,‘(il"'—m“') < .- < (-I-E-!-;T) (M° - m%).

Using the inequalities m* < h! < M?*, and m*® < p(f) < M*, by (24)
we obtain

k¢ = p(f)] < (————, :';L) (M° = m®).
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4. Numerical experiments.

The following examples explain the idea of the paper and the consid-
ered algorithm. The left part of figure shows F(z), P(z) and the right one
f'(z), P(z). Iter is the number of the last iteration, E is the best approxima-

tion and @, = sgn (f(2) - p(2)) ha(z, P(2); f), wp=B""(f'(z) - P'(2)).
Example1: For the function f(z) = sgn(z), f'(z) = 0 defined on the interval
[-1,1], n = 8, EPS = 107® the algorithm find E + 0.200 after /ter = 21

iterations. The coefficients of the polynomial and the values of f, P, s P50
and g on the discrete set are shown in Table 1, and graphically in Fig. 1.

Example 2: For the same functions f and f’, in the same interval but with
different points and degree of the polynomial P n = 10, we obtain E = 0.100
(see Table 2 and Fig. 2).

Example3: For f(z) = abs(z), f'(z) = sgn(z), n = 9, after Iter = 9
iterations we obtain E = 0.02907 (see Table 3 and Fig. 3).

Example4: For the same functions f and f’ but with n = 11, we obtain
E = 0.02069 (see Table 4 and Fig. 4).
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Figure 1.
Parameters: f(z)=SGN(z); f'(z)=0; a=1;3=2
EPS =1E -8; lter =21; n=8; k=3; I=7; E=0.200
! /£
$a = SGN(f - P).ha(z, P(z); f);  @=(f'(z)- P'(2))/B
Table 1.
J Coeff ' t | 1S P P ¥a ©s
0 |.5240924881577680E-13 | *01 [-1.00 {-1.0 |0.0 |-1.29278 |-0.40000 | 0.29278 | 0.20000
1 |4.300897544043974 *02 |-0.80 [-1.0 |0.0 [-1.19115 | 0.40000 | 0.19115 |-0.20000
2 |-.4604720351897253E-12 | *03 |-0.60 |-1.0 {0.0 |-1.21734 |-0.40000 | 0.21734 | 0.20000
3 |-9.856128150268884 04 |-0.40 |-1.0 |0.0 {-1.20000 | 0.91198 | 0.20000 |-0.45599
4 [.1225181535794102E-11 05 {-0.20 [-1.0 [0.0 [-0.78496 | 3.20834 |-0.20000 |-1.60417
5 | 11.53429636005183 06 | 020 | 1.0 {0.0 | 0.78496 | 3.20834 | 0.20000 |-1.60417
6 |-.1324965492036228E-11 07 | 0.40 1.0 {0.0 1.20000 | 0.91198 |-0.20000 |{-0.45599
7 |-4.686284985187378 *08 | 0.60 | 1.0 |0.0 | 1.21734 |-0.40000 {-0.21734 | 0.20000
8 |.4962513599275515E-12 [*09 | 0.80 | 1.0 |0.0 | 1.19115 | 0.40000 |-0.19115 |-0.20000
*10 | 1.00 | 1.0 |0.0 | 1.29278 |-0.40000 |-0.29278 | 0.20000
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Figure 2.
Parameters: f(z)= SGN(z); f'(z)=0; a=1;8=1
EPS =1FE —-8; [Iter =21; n=10; k=4; [=8; E=0.100
4 -
¢a = SGN(f — P).ha(z, P(2). f); s = (f'(z)- P'(z))/8
Table 2.
5 Coeff i : [ f 11 [ [ Pa vs
0 |-.5709798953090761E-13 | *01 |-1.00 |-1.0 |0.0 [-0.76469 | 0.10000 |-0.23531 |-0.10000
1 |6.267515747183950 *02 [-0.80 |-1.0 |0.0 |-1.61160 |-0.10000 | 0.61160 | 0.10000
2 | .1388284042548005E-11 |*03 [-0.50 |-1.0 |0.0 |-0.94933 | 0.10000 |-0.05067 |-0.10000
3 |-37.84444469101965 *04 [-0.30 [-1.0 |0.0 |-1.10000 [-0.10000 | 0.10000 | 0.10000
4 |-.1226799613987682E-10 | 05 |-0.30 [-1.0 [0.0 [-1.10000 |-0.10000 | 0.10000 | 0.10000
5 110.6345985183070 06 |-0.10 [-1.0 |0.0 [-0.59000 | 5.18660 |-0.10000 |-5.18660
6 |.3920938334057231E-10 | 07 | 0.10 | 1.0 [0.0 | 0.59000 | 5.18660 | 0.10000 |-5.18660
7 |-129.4148265544891 08 | 0.30 | 1.0 0.0 | 1.10000 {-0.10000 |-0.10000 | 0.10000
8 |-.4772226396258469E-10 | *09 | 0.30 | 1.0 [0.0 | 1.10000 |-0.10000 |-0.10000 | 0.10000
9 51.12184573515372 *10 | 0.50 | 1.0 |0.0 | 0.94933 | 0.10000 | 0.05067 |-0.10000
10 | .1928172281316550E-10 |*11 | 0.80 | 1.0 |0.0 | 1.61160 |-0.10000 [-0.61160 | 0.10000
*12 | 1.00 | 1.0 0.0 | 0.76469 | 0.10000 | 0.23531 |-0.10000
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Figure 3.
Parameters: f(z) = ABS(z); f'(z)=SGN(z); a=1;8=2
EPS =1E-8; Iter=9; n=9; k=4; I=7; E =0.02907
¥a = SGN(f = P).ha(z,P(2); f); w5 =(f(z)= P'())/B
Table 3.
) Coeff 1 r | f f' P P’ Pa P8
0 |.5814307634621296E-01 |*01 [-1.00 | 1.0 |-1.0 [0.95537 |-0.94186 | 0.02232 |-0.02907
1 [-.2330167309105846E-14 | *02 |-0.80 | 0.8 [-1.0 |0.72997 |-1.05814 | 0.03501 | 0.02907
2 12.234174110192909 *03 |-0.60 |0.6 |-1.0 |0.53750 |-0.94186 | 0.03125 |-0.02907
3 |.6105058536669195E-14 |*04 |-0.40 [0.4 |[-1.0 |0.33589 |-1.05814 | 0.03205 | 0.02907
4 |-3.682088246853765 05 [-0.20 0.2 |-1.0 |0.14186 |-0.78295 | 0.02907 |-0.10852
5 |-.5388521098664982E-14 | 06 | 0.00 0.0 {-1.0 |0.05814 | 0.00000 |-0.02907 |-0.50000
6 |3.779631106321106 07 | 0.20 |0.2 | 1.0 |0.14186 | 0.78295 | 0.02907 | 0.10852
7 |.2276569363983241E-16 |*08 | 0.40 [0.4 | 1.0 [0.33589 | 1.05814 | 0.03205 |-0.02907
8 |-1.434490618449424 *09 | 0.60 (0.6 | 1.0 |0.53750 | 0.94186 | 0.03125 | 0.02907
9 [.1195667146197518E-14 |*10 | 0.80 [0.8 | 1.0 |0.72997 | 1.05814 | 0.03501 |-0.02907
*11 | 1.00 [1.0 | 1.0 |0.95537 | 0.94186 | 0.02232 | 0.02907
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Figure 4.
Parameters: f(z)= ABS(z); f'(z)=SGN(z); a=1;8=1
EPS =1F -8; [Iter=17; n=11; k=5; |=8; F =0.02069
!
%o = SGN(f = P)ha(z, P f); 9= (f'(2)- P(2))/8
Table 4.
- - 18
; Coeff 1 t [ f | f P P’ Pa P
0 .4137918461528814E-01 *01 |-1.00 [1.0 |-1.0 [0.87738 |-1.02069 | 0.06131 | 0.02069
1 2606146043920338E-13 | *02 [-0.80 [0.8 |-1.0 |0.78479 |-0.97931 | 0.00760 |-0.02069
2 3.346277692890585 *03 |-0.60 [0.6 [-1.0 [0.55879 |-1.02069 | 0.02060 | 0.02069
3 -.2978010561539206E-12 |*04 |-0.40 |0.4 |-1.0 [0.37T176 |-0.97931 | 0.01412 |-0.02069
4 -11.31698026459515 *05 |-0.20 [0.2 |-1.0 |0.15862 |-1.02069 | 0.02069 | 0.02069
5 1772412408328284E-11 06 [-0.20 {0.2 |-1.0 |0.15862 |-1.02069 | 0.02069 | 0.02069
6 |24.36707538954424 07 | 0.00 |0.0 [-1.0 |0.04138 | 0.00000 |-0.02069 |-1.00000
7 -.4245219766085348E-11 08 | 0.20 (0.2 | 1.0 [0.15862 | 1.02069 | 0.02069 |-0.02069
8 -24.49868370370291 *09 | 0.20 0.2 | 1.0 |0.15862 | 1.02069 | 0.02069 |-0.02069
9 .4365239572281224E-11 *10 | 0.40 |04 | 1.0 |0.37176 | 0.97931 | 0.01412 | 0.02069
10 |8.938307255731628 *11 | 0.60 |0.6 | 1.0 |0.55879 | 1.02069 | 0.02060 |-0.02069
11 |-.1596547484788076E-11 [*12 | 0.80 |0.8 | 1.0 [0.78479 | 0.97931 | 0.00760 | 0.02069
*13 | 1.00 [1.0 | 1.0 |0.87738 | 1.02069 | 0.06131 |-0.02069




