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Absolute Cesaro Summability Factors

Hiseyin Bor
Presented by P. Kenderov

In this paper a general theorem on absolute Cesaro summability factors of infinite series has
been proved. Also some known results follow as special cases.

1. Introduction

Let 3 a, be a given infinite series with the sequence of partial sums (s,),
and let u$ and t& denote the n-th Cesaro means of order a (a > —1) of
the sequences(s,) and (na,), respectively. The series ) a, is said to be
summable |C, alg, £ > 1, if (see [2])

oo

(1) D nFHug - uglf < oo

n=1

But since t& = n(u& — u%_,) (see [4]), condition (1) can also be written as

= 1 alk
(2) ; ~Jtal* < oo.
The series 3 a, is said to be bounded [R,logn, 1]k, k > 1, if (see
)]

n

(3) Z v sy|¥ = O(logn) as n — oo.

v=1
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A sequence (\,) is said to be convex, if A%2), > 0 for every positive:
integer n (see [13]).

S.M. Mazhar [6] (see also B.P. Mishra [7]) proved the following theo-
rem. :

Theorem A. Let (A,) be a convez sequence such that 5 n~1'), is con-
vergent. If 3 a, ts bounded [R,logn, 1]k, then the series 3 a, A, is summable
IC’, llka k>1.

K.N.Mishraand R.S.L. Srivastava [9] have obtained a more genera}
theorem than Theorem A under weaker conditions. They proved the following
theorem.

Theorem B. Let (X,) be a positive non-decreasing sequence and suppose
that there are sequences (f3,) and (A,) such that

(4) |AAn] < B,
(5) Bn — 0 as n — oo,
(6) f: n|ABn| X5 < o0,
(7) |7:\=,11|Xn = 0(1) asn — oo.
If
(8) 3 v st = O(X,) asn— oo,
v=1

then the series 3 an A, ts summable |C, 1|k, k > 1.

2. The main theorem

The object of this paper is to obtain a more general theorem than Theorem
B. Now, we shall prove the following theorem.

Theorem 1. Let (X,) be a positive non-decreasing sequence and the se-
quences (B,) and (A,) satisfy conditions (4)-(6) of Theorem B. If

(9) [An] Xnyn = O(1) as n — oo
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and
n
(10) > v sul* = O(Xnva) asn — oo,
v=1
where (7,) is a positive non-decreasing sequence such that
(11) n X, 1nA(1/7n) = O(1) as n — oo,
then the series 3 anAn(yn)~' is summable |C, 1|k, k> 1.

We need the following lemma for the proof of our theorem.

Lemma ([9]). Under the conditions on (X,),(8,) and (A\,) as taken in
the statement of Theorem B, the following conditions hold, when (6) is satisfied:

(12) nBnXn = O(1)
(13) D" BaXn < 0.
n=1

Proof of Theorem 1. Let (T,,) be the n-th (C, 1) mean of the sequence
(na,‘%:). To prove the theorem, it is enough to show that

oo}

(14) > SITalt < oo, by (2).

n=1

Applying Abel’s transformation we have

SnA
T, = _S_ vau v(Tv)” v L
n + v=1 (7 ) }8 + l 7'"
1 -1 1 n-—1
—_ -1
== E— VAN (Y0) T Su + 1 UE=1 Ay +1A(1/792) 8y
1 = NSpAn
- Av v ___n— = 1in n n n,4» .
g E +1(Yo41) ™! t ot O 1+ Th2+ Thaz+ Tha, say

To complete the proof of the theorem, by Minkowski’s inequality, it is
sufficient to show that

— 1
(15) Y. \Tusl* < oo, forr=1,2,3,4.

n=1
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Now, applying Hélder’s inequality, we have

m+1 1 m+1 1 n—1 1 k
O g {Z vlmul—lsvl}
n n ’71,

n=2 n=2 v=1
m+1 n—1 1 1 n=1 k-1
<2 {Z leAul(;msu[*} x {; > leM}
n=2 v=1 v=1
a 11 % 1
=0(1) Y vlAN ] — (=) sul* Y oz
v=1 Yo v n=v+1

= 00) 3 slan] o7l = 00) 3 Tl

= 0(1) Z A{”"”} 3 "lsrl"+0(1)mﬂ’" 3 0y b

r=1 v=1
m-—1
Yo+ O(N)mPuXm = O(1) Y v|ABIX,
v=1
m-—1
+o() Z Iﬂu+1leu*ruA(—)+0(1)E Lottl y,3, + 0(ympnx
v=1 Tt

=0(1) Z v|AB,|X, +O(1) Z |Bu+1] +O(1) Z |Bu+11X, + O(1)mBn X

v=1 v=1 v=1

Since 1/X, = O(1), by hypothesis, we have that

m+1 m-—1
S LTt = o) Z o|ABIX, +0(1) Y ol X 5
n=2 n v=1 v+1
m-—1
+0(1) Y 1Bua| Xy + O(1)mBn X
v=1
m-—1 -1
=0(1) Z v|ABI X, + O(1) Z |Bu411Xot1 + O(1) Z |Busa] X,
v=1 v=1

+0(1)ymBpXm = O(l)asm—»oo,

by virtue of the hypothesis and the lemma.
Since v|A(L)| = O(x%;), by (11), and 1/X, = O(1), by hypothesis, and
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[A| = (71177:) = 0(1), |A|Xv =0(1/7,) = O(1), by (9), we have that

mt1 ) . m+l n—1 1 k
Z ;;ITn,Zl <> oy {Z |)\u+1||3u|”A(7_v)}
n=2 n=2 v=1
m+1 n-1 k
[Avt1] 1.
=0(1 Sy| =—
03 {z: sl L
m+1 n—1 Post] k
-0 o {3 Pl
n=2 v=1 Tv
O(l) mZH {Z "\U+1|| |k} { 1 "il !’\U+1I }k—l
-_— U S
n=2 v=1 e
m m+1 1
=0(1) ) Posal— lsul* > =
v=1 Tv n=v+1

=om 3 '*—"t‘—'v-wsvv

= 0(1) Z A{'*”*"} 3 s, [+ o() 2zt S ol

r=1 v=1
m-—1 m-—1
=0(1) Y [Adnal Xy +0(1) Y |Au+2|zmA(—) + O(1)[Am+1|Xm
v=1 v=1
m-—1 m-—1
=0(1) ) furrXu +0(1) ) A(—) + O(D)Am41|Xom
v=1 v=1

= 0(1) as m — oo,

by virtue of the hypothesis and the lemma.
As in T, 2, we have that

m+1 1 m |A |
> HITwalt = 0(1) 37 TR0 Msl* = 0(1) as m — oo,
n=2 n v=1 Tv

Finally, again as in T}, 2, we have that

m

> Limalk = O(I)E Bel p-tig, = 0(1) a5 m — oo,

n=1 v=1
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Therefore, we get

m
Z %]Tn,rvc = 0O(1) asm — o0, forr =1,2,3,4.
n=1

This completes the proof of Theorem 1.

Special cases:

i) If we take (A,) as a convex sequence such that Y- n~1A, is convergent,
X, =logn, and 7, = 1 in Theorem 1, then we get Theorem A.

ii) If we take 7, = 1 in Theorem 1, then we get Theorem B.

iii) If we take (A,) as a convex sequence such that S°n71\, is convergent
and X, = logn in Theorem 1, then we get a theorem due to S. Umar [11].

3. Application to Nérlund method
Let (p,) be a sequence of constants real or complex, and let us write

(16) ‘Po=po+p1+pP2+...Pn#0, (n20).

The sequence-to-sequence transformation

1 n
(17) Zn = 'P: Pn—-vSy
v=!
defines the sequence (z,) of Nérlund mean of the sequence (s,), generated by

the sequence of coefficients (p»). The series 3 a, is said to be summable
IN, palk, k> 1, if (see [1])

oo
(18) z n* =1 zp — za_|¥ < 00.
n=1
In the special case in which p, = 1 and P, = n, the Noé6rlund mean reduces
(C,1) mean and then |N,py|; summability becomes |C, 1| summability.
Concerning |C,1|x and |N,ps|r summability the following theorem is
known due to R.S. Varma [12].

Theorem C. Let po > 0 and (p,) be a non-negative and non-increasing
sequence. If 3 a, is summable |C,1|x, then the series 3 anPn(n + 1)1 s
summable |N,pa|k, £ > 1.

In view of Theorem C, we get the following:
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Theorem 2. Let po > 0 and (p,) be a non-negative and non-increasing
sequence. If Theorem 1 holds (i.e. Y apAn(yn)~" is summable |C, 1|k, k> 1),
then the series 3 an Podn[(n + 1)7n])"! is summable |N,pnl|k, k> 1.

Application of Theorem 2:

i) If we take p, = 1, X, =logn,y, = 1, and (A,) as a convex s such that
S n~1A, is convergent in Theorem 2, then we get Theorem A.

ii) If we take £k = 1 and 9, = 1 in our Theorem 2, then we obtain a
theorem due to K.N. Mishra [8]. :

iii) If we take Kk = 1, 7, = 1 and A, = 1 in Theorem 2, then we get a
theorem due to N. Kishore [3].

iv) If we put p, = 1/n, so that P, ~logn asn — oo, X,, =logn, v, =1,
k = 11, and (\,) as a convex sequence such that 3 n~!\, is convergent in
Theorem 2, then a theorem due to S.N. Lal [5] becomes a special case of
Theorem 2.

v) Finally, for £ = 1 and 74, = 1, the merit of our Theorem 2 is that it
proves the folowing theorem due to S. Ram [10] under weaker conditions.

Theorem D. Let pop > 0 and (p,) be a non-negative and non-increasing
sequence. If

(19) Z vl s,| = O(X,) as n — oo,

v=1

where (X,) is a positive non-decreasing sequence and if (A,) is such that

(20) EnIA"’/\,JX,l < 00
n=1

and

(21) |An|Xn = O(1) as n — oo,

then the series 3 anpnAn(n + 1)1 is summable | N, pn|.

Remark. It may be noticed that the condition (6) is a weaker requirement
than the condition (20) (see [9]).
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