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Presented by P. Kenderov

A preconditioned conjugate gradient iterative method is studied for the numerical so-
lution of the biharmonic equation with Dirichlet boundary conditions for the solution and its
normal derivative in a rectangular domain Q. We consider two discretizations of the differ-
ential equation: by standard finite differences and by quadratic splines from S; C C'(R).
The proposed preconditioner is constructed by first approximating the biharmonic operator by
changing the boundary conditions thus allowing factorizing the new operator into product of
two Laplacians. This product is then preconditioned by a recently proposed algebraic multilevel
technique based on corresponding discretizations of the Laplace operator. The resulting mul-
tilevel preconditioner is used in the preconditioned conjugate gradient method giving rise to a
multilevel algorithm with a total cost of O (N %log 1), where N is the number of the unknowns
and ¢ is the accuracy in the conjugate gradient method. Various numerical tests illustrating the
properties of the algorithm obtained are presented. In particular, an O(h~?) relative condition
number of the constructed multilevel preconditioner with respect to the corresponding matrices
Wwas observed in the tests confirming the theoretical estimate.

1. Introduction

The analysis of bending of elastic plates leads to the solution of the biharmonic
equation. The same equation has important applications in the shell theory and in
fluid mechanics.

This paper is concerned with a preconditioned conjugate gradient iterative so-
lution of systems of linear algebraic equations arising from finite difference or spline
finite element discretization of the biharmonic equation. Some advantages of the it-
erative methods for solving large-scale fourth-order elliptic boundary value problems
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are demonstrated by a large set of experiments. In particular, we point out the ill-
conditioning of the corresponding matrices (cond(A) = O(h~*)), that makes the con-
struction of efficient preconditioners especially important. We mention a number of
papers in this field: O. Axelssonandl. Gustafsson[lJand . Gustaf
s s o n [9] consider various incomplete factorization algorithms, domain decomposition
methods are considered in T.F. Chan,E. Weinan,andJ.S un [6], and multigrid
algorithms are studied by D. Braessand P.Peisker[5]and P.Peisker
[10]. Note that the latter two papers deal with mixed finite element formulations of
the problem. Some multigrid methods for solving systems of linear algebraic equations
that arise from standard nodal basis finite element discretizations of the problem are
reported in [4] and [13]. Namely; an optimal multigrid method for the Hsiech-Clough-
Tocher triangular finite element discretizations is proposed in [13], and in [4] some very
promissing numerical results for a slash-cycle multigrid algorithm with smoothers based
on pointwise ILU factorization are reported.

We study an approach based on changing the boundary conditions thus allowing
factorization of the new eperator into two Laplacians. This results to a nonoptimal
approximation of the original operator; namely at this step we lose a factor of O(h™!)
(h > 0 is the mesh size) in the relative condition number of the new (factorizable)
operator with respect to the original (nonfactorizable) operator. Then any known (of
optimal order if available) preconditioners for the Laplacian can be used to construct
a preconditioner for each of the factors and hence for the square of the Laplacian. We
used in the presented numerical tests preconditioners constructed on the basis of the
algebraic multilevel technique for finite element discretizations of second order eliptic
problems (in our case applied for the Laplacian) proposed in O. A x el s s on and P.
Vassilevskil[2],[3] as modified in P. Vassilevski[l2].

The formulation of the problem and the discretizations are given in Section 2.
We consider two discretization methods: standard finite differences and quadrilateral
finite elements based on quadratic B-splines. Section 3 contains the theoretical motiva-
tion for the proposed preconditioners and a review of some basic results concerning the
algebraic multilevel preconditioners for second order elliptic problems. The numerical
tests and some conclusions are presented in the final Section 4.

2. The discretization methods for the biharmonic equation

Consider the fourth order elliptic equation

A%y = f, in Q,

(2.1)
u = 93:0, onI =99,
on
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where A stands for the Laplace operator and Q = [0,1] x [0,1]. The corresponding
Galerkin variational formulation of (2.1) is to find a function u € H3(Q) satisfying -

(2.2) a(u,v) = (f,v), Vwve HQ),
where

(2.3) a(u,v) = /n(uuvm + 2Uzy Uy + Uyyvyy )dzdy
and

/]
HE(Q) = {vEHz(Q):v=b—:-i-=OonI‘}.
We consider two approaches for numerical solution of the biharmonic equation dis-
cretized on a uniform mesh w in Q. As a first method for discretization, we use the
well known 13-point finite difference stencil. In this way, we obtain the system of linear
algebraic equations

(2.4) KUdy = £,

where u is the vector of the nodal unknowns.
The second method we consider is the finite element method for solving (2.2).

As a finite element space, we use the space of quadratic splines 3‘2 (£2) [11] with a basis
of tensor product of B;-splines, where '

k+3
Bisz) = 3 Y (2, - 213 /wha(z),
r=k+1
(2.5) G z, —z when z < z,
4 b 0 when z > z,,
wk2(2) = (2= 2k)(2 = Th41 )(T — Th42)(T — Th4a)-

This results to a system of linear algebraic equations
(2.6) K“e = g,
where £ is the coefficient vector of the finite elemnt solution s 63' 2 (2).
Both matrices K(/9) and K(*?) can be written in a tensor product form

(2.7) KUd = AU g 1+ oB(/d) @ BUY) 4 T @ A(!d),
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(2.8) K(0) = A(P) @ Cop) 4 9 B(sp) @ Blsp) 1 C(59) @ AleP),

where I = diag(1,1,...,1) and

7 -4 1
(— 6 —4: 1 )
N R I
d) _ E
,4(f)_h_4 T ,
Pt b @ g 1
1 -4 6 -4
\ 1 <4 7)
2 -1
A
d) _ .
BU)-Z}' ‘e )
2 -1
-1 2
(6 -4 1
SR S R |
TR SRR |
A = L ,
_h5 . *e - )
: 1 a4 -4 .1
1 -4 6 —4
\ 1. =4 8/
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6 -2 -1
(—2 6 -2 -1 )
2o 2
(sp) — —— . .. .
B 6h3 . . . b
N T e |
-1 -2 6 =2
\ 2y iiaa VRS
(66 26 1 |
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(’P) = _— . . 3
¢ 120h IR
1 2 66 26 1
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3. Multilevel preconditioning

In this section, we consider an indirect multilevel technique for preconditioning
the matrices K(/4) and K(°P),

Lemma 3.1. The matrices K% and K(*P) are spectrally equivalent; i.e.,
(3.1) cond (K(P-1KUD) = 0(1).

Proof. The estimate (3.1) follows from the relations:

o C(?) is a positive definite matrix with cond (C(*P)) = O(1).

e The pairs of matrices (A(/4), A(P)) and (BU%), B(sP)) are spectrally equivalent
with
cond (B(?)-1BU4) = O(1) and cond (A(P~1 AUD) = O(1).

A 2D local analysis can be used (see [7]) for a precise computation of the constant in
(3.1). (]

Assume that, in order to obtain a sufficiently accurate solution of the problem
considered, a uniform refinement procedure is used. In this way, we have constructed
a sequence of meshes wy; C wy C ... C wy (see Figure 1) and corresponding matrices
Ky, K,,...,K,.
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Figure 1: Uniform mesh refinement of square domain

Then the system (2.4) (respectively (2.6)) corresponds to the finest level of
discretization w = wy.

We use the recently proposed AMLI (algebraic multilevel preconditioning) tech-
nique (for more details see [2,3]). Let Ma, be the optimal-order algebraic multilevel
preconditioner for the discrete 5-point stencil Laplace matrix K,. Then consider the
matrix

(3.2) M = (Ma,)?, where cond (M;:KAS) =0(1),

as a preconditioner of K(/9) and K(*?). Assuming H 2-regularity of the Dirichlet prob-
lem for the Laplacian (this is the case for our model rectangular domain §2) one can
show that the AMLI methods from Axelsson and Vassilevski [2,3] as modified in Vas-
silevski [12] are actually of optimal order in the L2-norm as well. Hence M = (Mx, )
is an optional order preconditioner for K Zs. But since the purpose of this paper is to
demonstrate the performance of the method we shall not go into more details here. We
performed several numerical tests confirming that M is an optimal-order precondition-
er for K3,. We now consider the structure of K3,, which corresponds to a 13-point
finite difference approximation of the biharmonic equation with boundary conditions
U = Up, = 0 on I'. We have

(3.3) K3, = AU @ 14+ 2BUM @ BUY 4 1 @ AUD
where
PN R \
-4 6 -4 1
. 1 -4 6 -4 1
24d) _
A(I)_F

1 -4 6 —4 1
1 -4 6 -4
\ 1 -4 5)
We note that our original finite difference matrix can not be factored into prod-
uct of matrices representing any known discretization of the Laplace operator (with
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appropriate boundary conditions). Based on the analysis of Braess and Peisker [5] the

following result follows.

Lemma 3.2. The matrices Kzs and K9 satisfy the following spectral
equivalence relation

(3.5) cond ((KZ.,')-l K'(fd)) =0(h™).
Therefore, we have from Lemma 3.1 and Lemma 3.2 that
(3.6) cond ((K3,) 7 K) = 0(h™).

Following (3.5) and (3.6), we can expect, for the preconditioner M from (3.2), the
estimates

(3.7) , cond (M-IK(“)) = 0(h™Y),
and
(3.8) cond (M"IK(’P)) =0(h™),

to hold. The last two relations lead to an O(N®/%) arithmetic cost of the proposed
multilevel preconditioning algorithm. Here N is the number of the unknowns. This
has been confirmed in our numerical tests.

4. Numerical tests

In this section, we present some numerical tests that demonstrate the properties
of the proposed multilevel technique for iterative solution of the biharmonic equation.

The model problem (2.1) is discretized by finite differences leading to the system
(2.4) and by the quadratic spline finite elements method yielding the system (2.6).
Tables 1-3 show the behavior of the preconditioned conjugate gradient method with
preconditioner defined by (3.2) related to the finite difference discrete system. The
numerical tests corrsesponding to the solution of the spline finite element systems are
similarly presented in Tables 4-6. The meshsize h = 2% is varied as a function of
the number of the refinement levels k = 3,4,5,6,7. The measures used to study the
proposed preconditioner are the number of iterations and the corresponding CPU time
in seconds. The tests presented are performed on the Ardent computer.
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The preconditioner M is defined by (3.2), where M, is the hybrid algebraic
multilevel preconditioner proposed in [12]. We denote by v* = (j1, 2, . .., i) the degrees
of the accelerating polynomials used in the algebraic multilevel algorithm. For more
details we refer to [12].

In the second columns of the tables, we show the relative condition numbers &k =

cond (M Z: K As) and the reduction factor p of the corresponding algebraic multilevel

algorithm for solving systems with a matrix K,. One can see that x and p are
uniformly bounded with respect to k.

The average reduction factor of the iterative methods studied for solving the
biharmonic equation and the relative iteration factors are presented in the last two
columns of the tables.

The numerical tests show an attractive (but not optimal, as must be expected)
convergence rate of the proposed preconditioning iterative technique (i.e., the increase
of the number of iterations per level). The iteration factor is near v/2, which is in full
agreement with (3.7) and (3.8), respectively.

We finally remark that the proposed approach of preconditioning the (nonfac-
torizable) biharmonic operator discretized by finite differences was successfully applied
in Ewing et al. [8] for solving 2D nonstationary Navier-Stokes equations in the stream-
function (¢) formulation based on a fourth order equation for 1.

TABLE 1. Biharmonic equation; finite differences
v # (LT E1) vt =(1,2,2,1)
V2 (1,252231), n¥={121)
v®=(1,2,2,21)

average red. | iteration
levels | &/p | iterations | cpu/sec factor factor
3 (1)?2 8 0.68 0.26 =
4] SRk e 342 | 037 1.95
5 g;g 13 17.58 0.46 1.3
6 ggi 18 95.26 0.56 1.37
7 ggz % 19 402.56 0.60 1.06
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TABLE 2. Biharmonic equation; finite differences
v =(1,3,1,3,1,3,1), v*=(1,1,3,1)

8 =(1,1,3,1,3,1), " 17=11,3,1)
Vs =(1,3,1,3,1)
average red. | iteration
levels k/p | iterations | cpu/sec factor factor

3 (1):?2 7 0.15 0.25 -
4 (1):?2 9 335 | 031 1.29
N S 12 17.70 0.41 1.33
6 (1]:’1”; 16 90.77 | 051 1.33
7T | ;:?g 18 406.35 0.56 1.13

TABLE 3. Biharmonic equation; finite differences
v =(1,3,1,1,3,1,1), v*=(1,3,1,1)
®=(1,3,1,3,1,1), +»A=(,1,1)
v® =(1,1,3,1,1)

average red. | iteration
levels | x/p | iterations | cpu/sec factor factor
3 g i: 8 0.57 0.31 e
T 14 3.95 0.50 1.75
5 ggg 16 11.69 0.54 1.14
6 ggg 20 87.87 0.61 1.25
7 ggg 28 476.14 0.70 1.40

129
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TABLE 4. Biharmonic equation; splines

1/ —(1 2,2,2,2,2,1), vi=(1,2,2,1)
=(1,2,2,2,2,1), v¥=(1,2,1)
=(1,2,2,2,1)

average red. | iteration
levels | k/p | iterations | cpu/sec factor factor
1.93
3 0.16 12 0.97 0.31 -
2.17 ;
4 0.19 19 6.15 0.47 1.58
2.28
5 0.20 22 28.70 0.52 1.16
2.34
6 0.21 29 150.05 0.60 1.32
2.37
7 0.21 36 740.08 0.67 1.24
TABLE 5. Biharmonic equation; splines

v =(1,3,1,3,1,3,1), u4_(1 1,3,1)

V8 =(1,1,3,1,3,1), v®=(1,3,1)

5 =(1,3,1,3,1)

average red. | iteration
levels | x/p | iterations | cpu/sec factor factor
1.85
3 0.15 12 1.12 0.30 -
1.95
4 0.16 18 6.28 0.44 1.50
1.98 .
5 0.17 21 29.67 0.50 1.17
1.98
6 0.17 24 133.16 0.55 1.14
1.99
7 0.17 30 659.90 0.62 1.27
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TABLE 6. Biharmonic equation; splines

v =(1,3,1,1,3,1,1), u4—(1 3,1,1)
V8= (L3.13,1.1), 1= (L11)
v =(1,1,3,1,1)
average red. | iteration
levels | k/p | iterations | cpu/sec factor factor
2.12
3 0.18 14 0.95 0.37 -
2.71 .
4 0.24 21 5.80 0.50 1.50
2.89
5 0.25 24 26.02 0.54 1.15
2.96 . '
6 0.26 30 129.80 0.62 1.25
2.97
7 0.26 42 707.47 0.71 1.4
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