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Contouring of Interpolating Surfaces !
Ljubisa M. Kocié , Dusan M. Milogevicé

Presented by Bl. Sendov

An algorithm for generating a map of level-lines of the polynomial interpolants is
presented. It is based on so called tracing algorithm developed earlier by the authors, and
described here shortly.

1. Introduction

Let z = f(z,y) be a function of two variables defined on D C R? and
G = {(z,v, f(z,¥)), (z,y) € D} be its graph. The contour G (or f) means to
define a bijective map ® : ¢ — L of the sequence ¢ = {¢;}/%; where minp f <
¢; < maxp f to the set of level-lines L = {L;}~, where

Li={(z,y) € D| f(2,y) = ei}-

If the function f is given by analytic expression then many methods of
contouring are known. But if f is a function defined through some algorithm
then the problem of contouring is not so easy. This problem rises if one wants
to visualize the surface defined through some discrete data, or through some
constructive algorithm, like in the case of free-form curves for purposes of geo-
metric modeling. Some methods in use [1], [18], [18] are based on subdivision
which gives essentially slow algorithms. Others, [21], [9], make use of rational
curves and are limited to the second degree surfaces.

The aim of this paper is to use tracing algorithm, developed in previous
papers [11], [12], [15] for increasing the speed and improve the accuracy of
contouring.

1This research was partly supported by Science Fund of Serbia, grant number 0401A,
through Matematicki institut
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2. Algorithm

The problem is to trace the curve L given by
F(z,y)=0, (z,9)€G,
where G C R2. By differentiating this formula one gets
(1) Fidz + Fldy=0, (20,%0) € G,

which is the basis of the algorithm. Being a two-stage process, this algorithm is
an improved version of the algorithms given in [10] and [20)].

Stage I (Searching for the starting points).

First of all, a rectangular domain D = [a,b] X [¢,d] (a < b,c < d), such
that G C D have to be determined. Then, using the modified Regula falsi
method, the following two sets of equations are solved

b—
(2) F(a+ N“i,y): 0, ¢i=0,---,N; yE€|[c,d],

d-
3) F(”c"‘ ch)= 0, 7j=0,---,N, z € [a,b],
v
where N; and N, are natural numbers, defining the degree of subdivision along
the y- and z-axis respectively. If the solution is not found, the values of N,
and N, have to be increased. If there exists (¢,7) in (2) and (3) such that
F(a + %fi,c+ %ij) = 0, then the point (2o, %) = (a + Q’ﬁfi,c+ %‘;‘j) will be
found twice, in the process of solving (2) and then (3). So, the union of two sets
of points, derived from (2) and (3) is made.

Stage II (Curve tracing)

In this stage, the algorithm calculates the set of points {(zo, 0),(Z1, 1), * .
(zm,ym)} that are the vertices of the polygonal line which approximates the
curve L. So, the algorithm is iterative, and in ¢-th iteration it calculates the
point (z;,¥;), and has M iterations. This number can be limited by three fac-
tors: 1. Computer’s memory, where all the vertices of the polygonal line have
to be stored; 2. Closeness to the starting point; 3. Passing the bounds of the
rectangle D.

First of all, the algorithm checks if the current point, p; = (z;,¥;) is the
singular point, i.e. if

(4) “'—:(2,', vi)l + '.F;(I.', vl < €,
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where ¢; is small enough. The logical value of (4) is the main switch in the second
stage of the algorithm. If (4) is true, then, the new point p;41 = (Zi41,¥Yi4+1) is
found by the linear eztrapolation based on the previous point p;—; = (z._l, Yi-1),
such that

Pi+1 — 2p; + pi-1 = 0.

Here a problem arose for the case i = 0, i.e. when pg = (zo,%) is a
singularity of the curve. Then,

(5) z_1 =2oth, y-1=y th,

have to be taken, where h > 0 is the prescribed tracing step. The signs in (5)
are chosen arbitrarily if po € intD. If po is on the border of D, po € 3D, then
the signs are adjusted so that p_; will place outside the domain D.

If (4) is not true, the point p; is not singular, and then F/(z;,y;) # 0 or
Fy(zi,¥:) # 0, so the algorithm determines the next point, p;4; by solving the
initial value problem (1), using the procedure given in [20)].

The point p;4; is evaluated by a predictor-corrector procedure. In the
predictor phase, according to the sign of

oi = |Fz(zi, i)l — | Fy(2i, 9),
we use the iterations
Tig1 = i+ Sch(1 — H(o;)) - S h,&{::—';:;]](a.),
Virr = Ui~ S:hHESA(1 - H(0)) + SyhH(02),
where H(t), t € R is the Heaviside function, H(t)=0,t<0; H(t)=1,t> 0.
What we want to underline is the automation of choosing the signs S,

and S, at the initial point po = (Zo,%). If po € intD, S, and S, are set
arbitrarily. If po € 9D, then S; = S, =1 and if p; € D then, S; = S, = —-1.

In the corrector phase, p;4; is corrected using the Newton-Raphson met-

hod:
it = ;’,";‘5-{—’)(1 —H(e), i1 =zi- %H(w),

The stopping criteria of this correction is

lF(zh yt')l < €3.



192 Ljubisa M. Kocié , Dusan M. Milosevié

This completes the algorithm. Let us recall what are input/output information:
The input information:

o F(z,y), Fx(z,y), Fy(z,y) - the function and its derivatives;

e Rectangular area [a,b] X [¢,d] = D, in which the graph of F(z,y) = 0 is
supposed to reside;

e h > 0, the step for the initial value solver;

® €,€2 and €3 — small values numbers, respectively defining the neighbor-
hood of the starting point, closeness of the singular point, and the stopping
criteria.

The output information:

e The polygonal approximation {(z;,¥:)}~, of the curve L : F(z,y) =
0,(z,y) € D, i.e. the vertices of the polygonal line {(z;,¥:i)},-

e The tracing error E(s), defined as the error versus the arc length

E(s) = |F(=,y)|,

where s is the arc length from the beginning point po to the current
point p = (z,y). Numerically, s is approximated by the polygonal line
{(z0,%0),---» (Zi, %)} (0 < i < M) where (z;,y;) is the current point.

Note that vertices of the polygonal line that approximates our curve
satisfy
max(Zi41 — Zi, Yi+1 — %) < hy

i.e. the i-th segment of the polygonal approximation is contained in the square
[zi, i + h] X [yi, i + R).

3. Regular data interpolation

Suppose f;; are numerical values read off the function f(z,y) defined on
a rectangular domain D, so that f;; = f(zi,y;). In this sense, (z;,%;) is a node
of a regular rectangular mesh. The task is to visualize the surface obtained by
interpolation to data {f;;}.

As an interpolating tool we choose Hermite bicubic polynomial which is
defined by 16 data, four par each vertex of the mesh rectangle. Namely, for
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Figure 1: The Hermite rectangle

each vertex we need the value of function f, its first derivatives f;, f, and the
second derivative f;,, as it is shown in Figure 1.

The resulting bicubic Hermite patch is defined as a span of the bicubic
polynomial basis ‘
{z'y |0<i<3,0<5 <3},

see for ex. [13]. According to our data, we have only f at each vertex, so
fz, fy and fz, have to be estimated. Here we use H. A k i m a [3] procedure for
estimation of derivatives. It selects n. nodes P;, i = 1,---, n,, that are closest to
the node P. For every combination (i, j) a vector product V;; = PP;x P-I",- ] =
1,2,---,n., where P, P;,, P; are arranged to be counterclockwise, have to be
evaluated, so that z component of V;; is positive. Let V= W, Va,V3) =3 V:,
The estimation of partial derivatives, are than given by

o __nh of_ W
0z = Va' Oy V5’

For the second order derivatives an analogue procedure is used. As
0%f/8zdy can be obtained either as 58;(3f/3y) or 5%—(8]/8::) it is the best
to take an arithmetic average of these values. The first value is obtained by
using values for 8 f/dz instead of f in interpolating nodes, while for the second
value 8 f /0y is considered as interpolating data.

On the basis of 16 data per each mesh rectangle, the linear system of
the format 16 x 16 is formed which gives 16 coefficients of the interpolant patch
p(z,y). In our examples the Gauss algorithm with pivoting is used.
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Of course, interpolation is performed on the unit square {(0, 0), (0, 1),(1,0),
(1,1)} which is transformed by an affine transform to the real mesh rectangle
R= {(an yO)a (30 + hta yO)y (zD, Y + hy)’ (3"0 + h.z" Yo + hy)}-

If the "square coordinates” are denoted by X, and Y, then the transfor-
mations into "rectangle coordinates” (X,Y’) are

X=hX,+20, Y= tha + %o.

Then, the partial derivatives, estimated on the square have to be trans-

formed as well, by )

of -h 9f of -h af

X, ToX’ oY, vy’
which is necessary for contouring. Now, all the input information are available
and contouring is performed as it is described in Section 2.

4. Scattered data interpolation

Suppose that {M; = (zi,v:)}/~, are scattered interpolating nodes in
D c R? and {f(M;)}™, are corresponding data set. Here the method of H. A
k i m a [2], [4], [5], [6] for bivariate interpolation is used. This method is based
on max-min angle triangulation of the points {M;} suggested by C. Laws o
n [14]. As it is shown by G. Ni el s o n [16], [17] max-min triangulation of
Lawson, is equivalent to min-max criteriaof F. Littleand R. Barnhil
1[7]. Characterization of these two triangulations is similar: each triangulation
is associated with a vector having n; entries representing either the largest or
smallest angle of each triangle. These entries are ordered and then a lexico-
graphic ordering of the vectors is used to impose an ordering on the set of all
triangulations. In the case of min-max criteria, the smallest of these vectors
based on their lexicographic ordering gives the optimal triangulation, while in
the case of max-min criteria, the largest vector is associated with the optimal
triangulation.

After the optimal triangulation is obtained, H. A k i m a [2] suggests
a polynomial interpolant on each triangle 7" which is defined by the following
facts:

The value of the function f(z,y), (z,y) € T is interpolated by a bivariate
fifth-degree polynomial

5 5-1

oz, 9) =YY aiz'y’,

=0 j=0

which has 21 coefficients to be determined. The values of the function and
its first-order and second-order partial derivatives, f, fz, fy, foz, foy and fyy,
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f,fx,fy, fxy, fxx,fyy

F ifes

Figure 2: The Argyris triangle

are given at each vertex of T (this provides 18 data per triangle) and three
directional derivatives normal to three sides of T'. This triangle is known as the
Argyris triangle [8], see Figure 2.

The linear system for the coefficients a;; is solved by Gauss algorithm
with pivoting, as in Section 3.

The interpolation is performed on the unit triangle ' = {(0,0), (0,1),
(1,0)} and then it is transformed to an arbitrary one {(zo, %), (z1,%1), (z2,%2)},
such that

X = (23— 20)X: + (21 = 20)Y: + 20,
Y= (y2-w%)Xe+(n - %)Y+ v,

where (X;,Y;) are coordinates in the unit triangle. The necessary transforma-
tions of partial derivatives reads

%t- = (1:2 - 30)58& + (y2 - yO)gé’

d

3_1{; = (1 - zo) 3% + (11 — w)5F.

Now we can pass to the contouring procedure, defined by our algorithm.
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5. Examples

Examplel. Let the nodes are displaced at the rectangular mesh (0, 0),(0, 100),
(0,200), (100,0), (100, 100), (100, 200), (200, 0),(200,100), (200, 200). The val-
ues of the function f and derivatives estimated by Akima method, are given in
the tables bellow:

nodes (0,0) (0,100) (0,200)
f 0 : 0 0
fr 0.042857142857 0.06 0.042857142857
fy 0.014285714286 0.02 -0.014285714286
fzy | 2.6530612245E-5 | -8.8571428571E-5 | -0.00026933877551

nodes (100,0) (100,100) (100,200)
7 0 10 0
fz 0.02 0.05 0.02
Iy 0.06 -0.05 -0.06
fry | 8.8571428572E-5 | -0.00025 | -0.00025142857143

nodes (200,0) (200,100) (200,200)
i 0 0 0
f- | -0.014285714286 -0.06 -0.014285714286
f, | 0.042857142857 0.02 -0.042857142857
fey | 1.1102230246E-16 | 0.00028571428572 | 8.0612244898E-5

After applying our algorithm, the level-lines map of the polynomial in-
terpolant is obtained and it is shown in Figure 3 (left).

E xample 2. Forthe data from Example 1, the method of triangulation is
performed. Then, the method for scattered data is applied to these regular data.
The derivatives f;, f, and f;, are estimated to be the same as in Example 1.
Due to the requirement of additional information for Argyris triangle, two extra
derivatives are necessary: fr; and f,,. They are estimated as

nodes © (0,0) (0,100) (0,200)
fzz | -0.00017346938776 | -0.00015428571429 | -7.7551020408E-5
fyy | -0.00022244897959 | -0.00033428571429 | -0.00019387755102
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Figure 3: Levels lines for Examples 1 and 2

nodes (100,0) (100,100) (100,200)
Toa | -0.00024857142857 | -0.00045 | -0.00024857142857E-5
f,u | -0.00088857142857 | -0.00025 | -0.00019428571429

nodes (200,0) (200,100) (200,200)
Tor | -0.00041836734694 | -0.00011628571429 | -0.00041836734694
7,, | -0.00060204081633 | -0.00056285714286 | -0.00022244897959

The surfaces is contoured by our algorithm and the result is shown in
Figure 3 (right).

Two surfaces differs slightly. This non-coincidence of two interpolants
are caused by different polynomials used. But, it is worth to mention that
contouring of these interpolants is a good way to study theirs difference. Namely,
from the rendered sophisticated computer-graphic 3D picture of two surfaces,
this difference will be harder to detect.

Also, it is easy to notice, from the level-lines shown in Figure 3, that
both interpolant surfaces are not symmetric in spite of symmetry of data. This
effect is caused by the nonsymmetrical values of the derivatives being cstimated.
Namely, the method of estimation, used by Akima is not affinely invariant, and
the transformation spoils the symmetry.
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Figure 4: Triangulation and corresponding level-lines (Example 3)

E xam ple 3. Here, the scattered data from [18], [17] are used. Triangulation
is done by the max-min algorithm and the same result as in [18], [17] obtained.
This optimal triangulation is shown in Figure 4 (left). Partial derivatives are
estimated as it is shown in the tables. Finally, the level-lines, produced by our

algorithm are shown in Figure 4 (right).

nodes | (0.50,0.90) (0.50,0.80) (0.20,0.50)
1 0 0 0

1= | -0.24096385542 | -0.28571428571 | 0.35353535353
f, | -0.78313253012 | -0.92857142857 | -1.1111111111
fey | 1.1875156743 | 1.267786427 | 1.2423005307
foz | -2.0040908036 | -1.9501921805 | -3.2872767352
Fow 1.082564792 | 1.0135117277 | 1.1893804166
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Figure 5 Figure 6
nodes (0.85,0.40) (0.40,0.20) (0.70,0.15)
f 0 1 0
Sz -1.1825192802 | -1.5718157182 | -1.3477088949
fy -0.56555269923 | -2.0054200542 | -0.59299191375
Sey 1.8270240065 2.8986268223 2.1062345281
fzz | -0.34521221808 | -0.68807476123 | -0.89830274422
Suy 0.54090140899 | 2.0214264377 | 0.38376749686
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