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1. Introduction

The example of E. N e | s o n [1] was first to exhibit two symmetric oper-
ators A, B commuting algebraically (i.e. AB = BA) on the domain of essential
self-adjointness, and noncommuting in strong sense (i.e. the projection valued
[PV] measure of A does not commute with the PV measure of B ). Here a class
of Nelson—-type examples is extended from the case of second order elliptic par-
tial differential operators with constant coefficients [2] to higher order operators
with constant coefficients. The main result is contained in the Theorem proved
in Section 2 giving necessary conditions for strong commutativity of A and B
in terms of the geometry of boundaries of n-dimensional Eucledian domains.
With help of the Theorem one can construct a variety of Nelson-type examples
part of which are related to notions and statements of quantum theory of open
systems. We return to this point at the end of Section 3.

2. Notations and statement of results

We proceed to formulate the Theorem’s assumptions: [Bou], [Coe], [Dom]
concerning the n—dimensional domain boundary, the coefficients and the Hilbert
space domains of operators correspondingly.

Let ©Q be a bounded domain in R™ with piecewise boundary 82, which
has no points in the interior of the closure Q of 2. Let w and 9, @ C w are two
pieces of 9 i.e. open connected n — 1 dimensional subsets of the smooth part
of 9Q. Let the distance between 9 and 99 \ w is nonzero. One has
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[Bou]: w is supposed to be given by the equation f(z) = 0,z =
(zy,29,...,T,), which can be solved with respect to some z; where f is a smooth
(infinitely differentiable for any z;, 1 < i < n) function.

Denote the partial derivative 81/ B:r.,,az.,, .0z;, by
oL, I = {iy,iz,...,i5}, |I| = ¢. With R an integer and C*(Q2) - the set of in-
finetely dlfferentnablo functions on 2, let D>°(Q) be the following set of functions
ug(z). z € 3

D¥() = {u € €™ ¢ uk(z) = Brun(x) = Drus(x)

(0.1)

ARy () =0,z € aQ}.

Let up € D*(Q) and A, B be the formally self-adjoint elliptic differential ex-
pressions with coefficients a;, 8;, ay, by in C°°(Q):

(0.2) Auy = Za,(z)amuk/amz + Z ar(z)dluy,
=1 [I|<2R-1

(0.3) Aup = Eﬂi(z)amuk/az"z.- + Z b](:t)a:uk,
i=1 [I|1<2R-1

[Coe]: Suppose a;(z)|w, Bi(z)|w, ai(z)|w, bi(z)|lw are C°°(w)-functions
and Bi(z) > 0,2 € w, i = 1,2,...,n. Let the set of coefficients ratios riy(z) =
a;(z)/Bi(z), i = 1,2,...,n is decomposed into subsets of equal on @ functions:

Fok2) = ro(e)= . = v (2);
le(:t) = 1‘1'2(:!,‘) = L= Tjdt(z);

Th(2) = rpy(2) =0iv =1, (%), z € 0.
It is required that any open subset @ of @ contains points z € & such

that the values of r;(z) at these points are diferent for r;(z) taken from different
coefficient subsets, i.e. ry (z) # r;,(z) # ... # % (), T € 0.
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For later use one needs to consider also the corresponding decomposition
of coordinates z into subsets:

Tiy (2)y Tiy(Z)s - . - Tif (%) 25, (2)s Tjp () - . .25, (2)5 - - o2 Thy (2)s Tip ()5 - .z, ().

Let the self-adjoint extensions A. B of A and B exist in L3(€Q) with the following
domain condition: ‘

[Dom): (a) D(A) = D(B) and (b) u(z) € D(A)NC>=(Q) implies u(z) = 0
if € 9.

One has the following

Theorem. Suppose [Bou], [Coe] and [Dom] are verified and A and B
commute in the strong sense. Then on 8 the equation f(z) = 0 of the boundary
09 depends only on one coordinate subset from the corresponding decomposition
of the coordinates into subsets.

R e m a r k s. Formally self-adjoint elliptic diferential expressions A, B
satisfying Dirichlet conditions (1) and [Dom] (b), for smooth 9 are discussed
e.g. in [3]  Theorems 23 and 25 of Chapter XIV, 6 with D(A) = HNnH?*". Here
H® is the space of distributions together with R-th derivatives in Lo(), Hf
is the closure in H%? of C>®(Q)-functions with compact support. A special case
of the Theorem with R = 1 and constant coefficients of A, B is sudied in [2].

In [Coe] it is sufficient to assume for fixed z € w more generally that
3:(z) # 0 and the sign of B;(z) is independent of i, instead of simply 8;(z) > 0.

3. Proof of the necessary conditions of strong commutativity

In this section we give a proof of the Theorem in several steps, starting
from 1) to 6).

1) Consider a neighbourhood V of w, V € RV, such that V N 9N = w.
Introduce in V new coordinates & = &(zy1,22,...,2,),¢ = 1,2,...,n, with
& € C*(Q) and so that w is given by the equation & = f(z) = 0.

Denote by 8! a derivative of order |I| with respect to & and set: & =
(1,62, ...,&n), & = (&2,€3,...,&n). In the new coordinates one has

(2') Aug = T\ 1<2r @10  ug,

(3") Bur = |11<ar b10" ux,
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where @j, by are functions of the coefficients a;,B;,ar,b; and of 31¢;, |I| < 2R,
and do not depend of uy or 8’ ui. Then for the highest order derivative coeffi-
cients i.e. when |I| = 2R one has:

by = b . . — - . a&l 6652 a&"zn
(0.4) br = b iy,..sizn) = Eﬂ,(m)azj 9. oz,

Similar expressions hold for a; if a; is substituted in (4) instead of 3;.

2). In this step Aui, Buy as given by (2'), (3'), are written at any point
of ) as bilinear forms < . > of two kinds of sequences Gg, and =, Z, : Gx =
{le,sz, . .Gkg} ) == {51,52, . Eg} ) Eo, = {Eal,saz, .o .Eab‘}. For fixed Uk
and I = {i1,12,...,%5}, ¢ < 2R the derivatives 8uy in (2’) and (3') are written
in the form of the sequences G with elements Gy;, indexed by i. Similarly, the
coefficients @; (coresp. br), for I = {#1,42,...,4}, ¢ < 2R in (2'), corresp. (3') .
are written in the form of the sequences =, (corresp. =). The indexing inside
the sequences G, =, and = should be such as to permit to rewrite (2') and (3’)
correspondingly in the forms:

6
(0.5) Aug =< Gi, 2o >= Y GiiZai,
=1
)
(5') Buy =< Gi, = >= ZGkiEi-
fau]

In the following we need to fix by convention the indeces only of those elements
of Gk, =, and = which are used effectively later in the proof. For ¢ = § denote

s = 5(1,1,...,1) =
(5”) : = i Bi(z) (96:/0z:)*",
Grs = 32Ruk/d£?n

Set 9] = 0°/0€§ and let 9y denotes any derivative with respect to £ of
order |J|, J = (j1,J2y- -, Jr). Furthermore with the notations
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(0.6) I9:=u, T}:=08u,s=0,1,2,...,2R,

we separate the dependence on &, and on &’ = (£3,&s,...,&n). So 87 uy, |I| < 2R,
can be represented in the form 8y T'§. Denote for fixed s by [85’ I“,'c] a subsecuence

of G consisting of all 8JT'§{ such that |J| = 0,1,2,...,2R — s. Then Gy is
partitioned into subsequences [.. .]: :

(0.7) Gk = {[of19], [agr,{], [ard] . ..., [odri?2) iRy,

where I'?R = Gy;. Inside the s—th subsequence [.. ],, assign to 93T the smallest
index. Next choose [...]s, arbitrarily some single variable & € £ and continue
indexing different 9y T3 within [...], increasingly as the order of derivatives of
&; increases, otherwise the ordering inside [...], is arbitrarily fixed.

Finally, define Gy = {Gx1,Gx2,- - -,Gks—1,0} after substituting the end
element Ggs in G by zero. Denote by p + 1 the index corresponding to I'f =
A9TE as an element in G and set: A =§ — (p+ 1).

3). This step consists of substeps 3a), 3b) and 3c) and constructs the
functions vy € C*® (Q) and ®} € C®(w), k = 1,2,...,A. In 3a) the con-
struction of ®§ is done for s = R,R+ 1,...,2R — 1, while in 3b) — for s =
2R,2R+1,...,3R—-1. If s =0,1,2,...,R — 1, one sets ®; = 0. Finally, in
3c) vk is constructed. Before defining ®4 one first orders @ and its derivatives
for different s as a sequence with § elements denoted by FP. One defines F¢, if
instead of I'}, s =0,1,2,...,2R—1in Gk one writes ®4 and instead of Gs one
puts 0, i.e.:

(0.8) FP = {[o]e}],[o]e}].[0]@}]...., [67 9] , A0}
Here Fj denotes a subsequence with A elements defined as follows:
(0.9) Fo= {[o]ef], [oJep*1],..., [6]e2R]}.

Denote by F the A x A matrix
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Fy
F = _F2
Fa

If R < s<2R -1, then the functions ®} = ®{(£’) should satisfy the following
equality (10):

(0.10) detF #0, ¢ € w.

The restriction on # of the functions v, should satisfy the following equa-
lities (11), (12):

(0.11) v |0 = 0, |I|=1,2,...,R—1

(0.12) v |0 = %, s=R R+1,...,3R-1.

3a). To construct ®;, R < s < 2R - 1,1 < k < A, satisfying (9) and
(10) fix some row Fj in F, i.e. fix some sequence (9), with matrix elements
Frm, 1 < k,m < A. Suppose Fip = 6:}@{ for some s = 3 and some J inside

the subsequence [85’ Qi] . Choose @7 as a polynomial of single variable, namely

in the variable &; € £ whose derivatives are increasingly ordered inside [85’ Qf]

The degree of this polynomial should be so chosen, that 9y ®] = const =
Fyre # 0. If s < 3, choose @} as an arbitrary C°(w) function. If s > 3, choose

# = 0. The above procedure is repeated for any k, 1 < k< A. Then Fi,, =0
for m > k and detF # 0. '

3b). With help of #§,0 < s < 2R — 1, one constructs by recurrence
formulas (14) functions ®%, s = 2R,2R+1,...,3R—1, 1<k < A. For this
purpose one first orders ® in the form of sequences F!', and defines the expres-
sions Dj. Denote by F}}, p =0,1,2,..., R~ 1 a sequence with é elements,
defined recurrently as follows. If u = 0, F{ is defined by (8). For fixed p > 1, F}
is defined by formally writing ®;*' instead of ®} in places where ®f enters the

sequence F{'"'. Hence
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re={[ofey], [ofer™] ..., [of@rt* ]}

Define the sequence =Z = {Z,,Z,,...,Z5-1,0} by substituting the end element
=s of = by zero.

Denote by (6‘?) | w, % =1,2,...,u, a sequence whose elements are
obtained as restrictions on w of d;—derivatives of the elements with the same

indexes in the sequence =. Using the binomial coefficients ( l: ) ,p > 1, the

0
denote by D}, pu=0,1,2,...,R— 1, the following sum:

convention ( (1) ) = ( 0 ) = 0 and the bilinear forms < - > of sequences, we

Dt = k,_|w>+(’l‘><F,¢‘"‘,(a{s')|w>+
(0.13)

+ (’2‘) <F,ﬁ“2,(a¥§)lw>k+...+(:j) <, (01E) Jw>.

The functions ¢I>2R+“ p = 0,1,2,...,R — 1 are constructed by the following
recurrence relatlons:

R = (Zp | w)! [Du+ ( 5 ) BT (D1Es) | wt

(0.14) + ( ’2‘ ) P (90Z5) |w + ..

H R gn=
(“>‘1’2 (01Zs) |w ]

Due to the nonzero Jacobian of the coordinate change the derivatives
J€,/0z; can not be zero simultaneously. Furthermore, 8;(z) # 0 on w (cf.
[Coe]). Hence as seen by (5”) one can devide in (14) by Z5(z) |w # 0.

-
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3c). Finally, one constructs v, k = 1,2,...,A. Let 6, be a piece of 92
such that # C 6, C w and the distances between # and w \ @ and also between
6, and 9Q \ w are nonzero numbers. Denote by S and S; two open subsets
of R suchthat S C S CVandwnS =0, wnS; =6, Fix any function
7(€) € C=(V) with supp7(§) = §1,7(§) = 1if £ € §. Define for £ € Q the
functions vi(£) as follows: :

{

T(§) TNwo [1/(R+ NY@RHN(ENef+N | if cevnQ
(0.15)0k(€) = { - :
0 if £eV\Q
If £ € S one has
2R-1
(0.16) ot ve(€) = 3 [1/(R+ N)NOFBE+N(¢)aheR+N.
N=0 3

Since w is defined by & = 0, then (15) and (16) imply (11) and (12) Hence
v € D™ (ﬁ) In the sequel we set always up = vi.

4). This step verifies vx € D ([3]2) Since
p([8]") = {9 D(B) : Bge D (B)} and v ¢ D= () c D(B) it is

sufficient to check that Bv, € D*® (ﬁ), i.e.:

(0.17) - (849{Bw)16=0, u+|J}=0,1,2,...,R-1.

To verify (17) one first derives relations (22) and (23) used to rewrite the expres-
sion (5') for By in a suitable form. With the notation (6) and (7) one rewrites
(12) for s = pu + v as follows:

(0.18)(A¥1%) |10 = ¥}**, v=R,R+1,...,2R, p=0,1,2,....,R~1.

With help of (18) one compares the definition (7) of Gy and of F}' (cf step 3a).
Due to (18) it is clear that a 8{'-derivative of each element of the sequence G
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restricted on @ coincides with the element having the same index in the sequence
F}' or shortly:

(0.19) (0/Gx) 16 =Ff, u=0,1,2,...,R-1.

With the notations Gj and = one rewrites (5') oﬁ 0 as:
(0.20) Bui |0 =< Gi,E >| 0+ (T3RZ,) | 6.
One has for ;' —derivatives of (20) on 6:

(021)  0fBuc|6= (8 <Gir,E>) |0+ 0 (TIRZ,) | 6.

With help of Leibnitz’ rule the first and second member on the right hand side
of (21) are written in the forms given by (22) and (23) correspondingly:

(o <Cr,2>) 6 < "Gy, E>| 0+

+ ( ’1‘ ) < a;‘_—’t:‘,,,aé >| 0+

(0.22)
K n—2 2=
+ (2)<31 Gk, 0= >|0+...

+ (“ ) < Gi, 0"Z > 0.

=

or (=10 = [(orran) =] 1o+

o (%) (@ o o+
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(0.23)

+ ( ’2‘ ) [(a{‘*’ri") 9%25] 16 +

+ o ( ": ) (3R, 0¢=5) | 6.

Now we have all the tools to check (17). Indeed, if u = |J| = 0 then
the Lh.s. of (17) takes the form (20). Sustitute G | 8 = FP (cf. (19)) and
I'?R | 6 = &3 (cf. (18)) in (20). Then (14) is equivelent for y = 0 to the r.h.s.
of (20) when it is set equal to zero. Hence the L.h.s. of (20) equals zero i.e. (17)
is satisfied if p = |J| = 0.

Let |[J| =0, 1< u < R-1andcheck that (21) equals zero. This is seen
by comparison of the r.h.s. of (21) with (14) as follows. Rewrite (14) restricted
to 6 with zero to the left of the equality:

0 = &t 4507 [D,, + ( A )«b:""“(alas) 16+
(14')
+ ot (Z )@,2“(3;‘56)10] .

It is seen that D) as defined by (13) coinsides with the r.h.s. of (22) after a
substitution in (22) according to (19). All other (besides D)) members of (14’)
equal r.h.s. of (23) after a substitution in (23) according to (18) with v = 2R.
Therefore the sum of (22) and (23) (being equal to (21) and simultaneously
equal to the r.h.s. of (11)) is zero.

Hence (17) is proved for any g and |J| = 0, i.e. (3{Bvc) |6 =10. A
differentiation @7 where p + |J| < R — 1 of the above equality proves (17) in its
general form.

5). This step checks relation (27) used as a starting point in step 6) to

get the final result. Here one uses the following lemma.

Lemma [2] Let A and B be self-adjoint and strongly commuting op-
R . 233 .\ 2
erators. Then the equality D (A) =D (B) implies D [(A) ] =D [(B) ]
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The above Lemma and step 4) imply vz € D [(A) 2]. Hence Avy € D (/i) and-
the condition b) of [Dom] imply '

(0.24) (Avk) |8 =0.

Consider also (17) for p = |J| = 0:
(24') (ka) I 6=0.
Substitute zeros in places of the first p (of totaly §) elements of = (corresp. of

Z,) and denote the new sequences by Z° (corresp. =0).
Then one rewrites (24) and (24') in terms of bilinear forms < - >:

(0.25) <Gr,Z2>l0=0,

(25") <G =2 >16=0,

According to (11) the first p = § — (A + 1) elements of G | 6 are zero. Let L(z)
be a A + 1 dimensional lmear space associated with any = € 6. Then clearly
the restrictions G | 8,Z% | 6,Z° | 0 of G,Z2,=° belong to L(z). Recall that
Gy | 0 is differ from G | = FP only by the last element Gys | # = ®3/. Then
the notations (7), (8), (9) for Gk, F?, Fi, permit to rewrite (10) as

G,
G,

(0.26) rankfl . || = A,
Ga
Denote by x(z) a function on @ with values in R'. The orthogonality condi-

tions (25) and (25') of the A-dimensional subspace spanned by G, | 8, &k =
1,2,...,A, both to Z9 | # and to =Z° | @ imply

(0.27) =0(z) = x(z)2%=z), =z €.

6). This step verifies the dependence of the equation of 8 (39) only on one
subset of the arguments. The general ideas of the proof in this step are similar
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to the relevant part of [2], although the arbitrariness of the power 2R and the
nonconstant coefficients require modifications. Consider the components:

n -1
an,..4) = Za (8{1) 9% of =0 and
‘ oz

: d 3 LA
ban,.i) = Zﬂ (62) 8_16:, of =° i=1,2,...,n.

=1
With the notations

-1

(0.28)  Pi(z) = [a;(z)—x(z)ﬂj(z)l(a€‘> , j=1,2,...,n,

one rewrites (27) for the components a(, ;) and 5(1‘1'_'_',-) in the form:

(0.29) (}:P( )30 ) i=1,2,...,n.

J=1

Denote by 7 the set {z1,Z2,...,Zi,—1,%i;41,.--,Zn}. In virtue of [Bou] one can
solve equation &; = 0 with respect to some z;, in the form:

(0.30) &=z - ((z)=0.

Consequently for §&; = 0 (i.e. for z € 0) z;, depends on Z. To emphasize this
dependence one writes ¢ on 6 as II(Z):

T = {x;,zg,. ..,z,-_l,C(i),a:,-.,.,,. . .,z,,} = I(Z).

Denote for h = 2,3,...,n, nu(z) = E(II(T)). Due to (30) for j # ¢, one has

Omy _ 06, 06r OC

(0.31) 8z, ~ 9z; T Oz, Oz;"
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A substitution of 9¢,/dz; from (31) in (29) gives for h = 2.3....,n:

033 AEEGE- IS pEE)E - A0E)
i=1 li=1 .
J#u J#n

Equality (29) for ¢ = 1 due to 8¢;,/3z;, = 1 (cf. (30)) is written as:

(0.33) P, (II(Z)) - z P; (H(x))
j=1
J#u

Using (33) one simplifies (32) as follows:

(0.34) E P(n(—))a”" , h=2,3,...,n
Jj=1
J#u

Remark that 7,...,7, are independent, which is implied by the nonzero Ja-
cobian of the coordinate change. One comsiders them as n — 1 independent
solutions of (34) and gets:

(0.35) P(IE) =0, j#i.
Furthermore (35) and (33) give:

(0.36) P, (1(Z)) = 0

Since 9€1/0z;, # 0 then (36) and (28) imply a;j(z) - x(z)B;j(z) = 0. Due to
[Coe] one has:
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(0.37) rio(z)=rip(z)=...=r,(z)=x(z), z€0.

If j#i5,9=1,2,...,0,then (37) and [Coe] imply for any open subset 8 of 8
existence of points z € ¢’ such that

(0.38) | ri(z) - x(z) # 0.

Then at such points (28) and (35) imply 9¢,/0z; =0, j # i,.

One shows that the last equality holds everywhere on #. Assume on the
contrary that there are points # € 6, such that r;(#)— x(&) = 0 for j # i,. Then
(28) and (35) offer two possibilities: @€,/0%; = 0 and 9,/0%; # 0. Continuitly
properties extend the last inequality on a neighborhood V() of #;. Then
(28) and (35) imply together with (37) that r; (£) = r;(&), 7 # ¢, on V(Z;)
in contradiction to [Coe]. Consequently 9¢€,/0z; = 0, j # i on @, ie. & is
independent of z;, j # i, and

(0.39) & (ziy, Tiyy .-, 23,) =0

is the equation of 6.

The class of Nelson-type examples discussed here has the merit to be
of interest in quantum theory. In this case, the notion of simultaneous mea-
surability (compatibility) is basic for a number of developments. Recall that
an observable according to von Neumann [4] is considered to be a self-adjoint
operator or equivalently its canonically associated PV measure. More gener-
ally, e.g. [5], to an observable one associates a positive operator valued (POV)
measure defined on the measure space of the possible observed values. De-
noting by F(A) (correspondingly by G(A')) the POV measures of the first
(corresp. second) observable and taking the whole measure space to be R',
one has the following Definition [5]. Two observables are called compatible
if there exists a POV measure M(A x A’),A x A’ € R' x R' such that
M(A x R') = F(A), M(R!x A') = G(A").

In the case of PV measures it is known that the above definition is equi-
valent [5] to strong commutativity. (For an extension of the notation of strong
commutativity to maximal symmetric operators — via commutativity of the gen-
erated semigroups — which is equivalent to compatibility, see [6], [7]).
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An application of the Theorem from Section 3 to the special case of second
order differential operators with constant coefficients which represent quantum
observables is given in [7]. The case of higher order derivatives in the Theo-
rem corresponds to observables representing powers of some other observables
according to the standard quantization scheme. The application of the The-
orem then shows that the simultaneous measurability of quantum observables
depends on the geometric properties of the boundary of the Euclidean domain
where the motion of the particle is confined.
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