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On the Means of an Entire Function
and its Derivatives

Maria I. Mitreva
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In this paper we generalize some results of Rahhman [1]) and Jain [5] on the means

ol an entire function in the case when its order p is an arbitrary nonnegative intcger.

Let f(z) be an entire function on C and

My(r) = max 1/(2)].

We introduce the order p ol a function f. as usually:

S Inln ”_[(l)
(1 = - _—
(1) p=lim,_n~ =

For each fixed 6,1 < ¢ < oo and each k € Z4, let
1/8
I(r)=Is(r; f) = {—}— il |f(1(‘0)|"(l€} ,
V]
2
ms(r) = ms(r; [) = & [ |[(rc)d0 = (1s(r))",
0
Msi(r) = Moulr; [) = 7 | f | /(e ek dbde.
00

For each p € Z, let I}" )(r), m(r), M ("?(r) be the same characteristics but of

the function f(?)(z) = dPf/dz?, i.c.

IP(r) = Io(r; fO)(2)), mP(r) = ms(r; f(2)), M) = Ms(r; fP(2)).
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It is known ([2], Problem 66) that if 6 = 2,k = 1, then

b {2} _

In» P

(2) fim,
In 1956 Q. A. Rahman [4] proved for every 8, 1 <6 < x.k € Z,.

l;t,« (r)
i { it} _ 2
In i

(3) lim,—

In 1971, éonlsiderillg functions of two variables, but in l[act solving one dimesional
problem, P. K. Jain [5] showed that

1)

B bl A
ln{ A

= /.
Inr f

(1) i, o

In our paper we generalize the results of Ralhman and Jain in the
case when p is an arbitrary nonnegative integer.

Iirst, let us consider some auxiliary propositions and remarks.

Since |f]° is a logarithmic subharmonic function, Is(r) is an increasing
function of » and a logarithmic convex one with respect to In» (see [3]). Ac-
cording to the general theory of the convex function, there exists an increasing,
continuous except for at most countable set of points, function w(r) (which we
can define there as a function continuous on the left) such that

w(a

') da.

(5) In Is(r) = In Is(ry) + /

ro

£

The same is true for | f®P)|®, so from expression (5) we get the next remarks.

Remark 1. Foreach lixed p € Z4 there exists an increasing continuous
on the left function wy(r) such that

=

(6) In Ig-”)(r) = lu I;p)(n,) + /‘-ﬁ’f—,l da.

Remark 2. If » is sulliciently large and rg > L. the functions wy(r)
satisly the estimates

In l;”)('r) —In l‘:")

T  pECL ..

(7) wﬁ(") 2>
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We prove the following three lemmas.
Lemma 1. For every cnlive funclion f of order p,

(8) G lnd(r) o
Inr

Proof. It is evident that [s(r) < Mg(r) 'd.ll‘(l for arbitrary ¢ > 0 and
sufliciently large », from (1) we get
Inln Is(r
vIn Ag(7) <
Inr

(9) p+e.

On the other hand, the Poisson’s formula for |f]® and Harnac’s inequality give

us
R R+ r\'? :
< () o)

lor y = |z] < R. So, if R = 2r, since [y is an increasing lunction and tends to
finity when r — oo,

Inln My(r) = lninls(2r) + In [1 + KTn-“'l'I:Zﬁ
< Inlo Is(27) + o(1).

Then, from (1) there exists a subsequence r; — oo when j — oo such

that
Inln Is(7;) i
Inr;
and together with (9), this proves (8). ' ]

Lemma 2. If f is an analytic function in the cirele |2 < R, R > 0,
then for every p € Zy,r < I:

“(R—-1r)

Proof. Since f is analytic, we can write the Cauchy’s integral formula
for its p-th derivative

f(p)(z) == ﬂ / i_._f_(f_)_ de¢

27i ¢ — z)etl
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and from the Hélder’s inequality and Fubini’s theorem for the multiple integral
we obtain: there exists some r',r < r' < R such that

1/8
'
Ig?)(r) < (]l { /15(1 )ll(/)} < (T—-)— 1.(I?).

Thus, Lemma 2 is proved.

Lemma 3. For each p = 2,3,... there exisls an increasing continuoud
on the left function wy_1(r) such that

(p—1)
(11) "> I—i—) wp_1(7).

- Proof. Using the definition of the derivative and Minkowski’s inequality,

we have
(12) ;
2 s
(») 1 g L= (ret®)— =) ((r—re)e’®) [ o
IP(r) =43 ({ Ihm,_.o =3 do

1/8
> limeo & {,,, . [lj"’-”(:r"’n | Se=D((r —,e)«'")|] 110}

> lime—o % [1r)— 1P (r - re)]

Ig"—l)(r_'.c) [ lzv—l)(r) iy 1]

er Iﬁ""”(r-—re)

> lim,_o

and from (6) with ro = r — re, we obtain
n I (r) > W IV (r = 1) + wypei(r — re) In 7
=In {I}”—l)(r —re) [l + ewp_y(r — re) + a(s)]} X

that is,
I(P—l )(1‘ )

214 cwy_1(r — re) + o(e).
7 o 1)(r--re') s

Thus, by the continuity of Is(” 1)(1') and the left-continuity ol w,_;(r) when

e — 0, we obtain
(P 1)( )

1(r) > wp-1(7).
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This completes the proof. ‘ : [

Corollary 1. For each p=2,3,...

(13) IP(r) > I"(

wp—l(’ ) WO(T)’

where all the functions wj(r),j = p — L,...,0 are increasing and conlinuous on
the left. '

For each of the functions [gj),j =p—1,...,0 we use Lemma 3 and then
(13) follows from (12).

Corollary 2. Foreveryr < R, R > 0 the quotient ]61’)(, )/ Is(r) satisfies
the estimate

I(P)( )

1
(14) In 24— T

<plhnwe(R)—p InR+0(1).

Indeed, from Lemma 3 and formula (5) when 79 = .7 = I we have

I(P)(
Is(r) ~
and if the function f is not a polynomial (this is the case p = 0 and then all the

results follow immediately from the definitions), the function wy(r) is increasing
— oo and we can find a large 2, so that the equality

In

<p lan — + wo(R) ln£+0(1)
-1 r

1 _ wy( )

R—r n

holds. From here,
» >

<
1 - 1/wo(R) = 1= 1/wo(R)
and since wo(r) — oo when r — oo, we can put R = (1 + o(1)).
Therefore, a := 1/wo(R) < 1, In(1 — a) = —a + o(«) and

R=

1}?)(,)
Is(r)

In <plnwe(R)—p InR+0(1).

Corollary 3. The funclions wj(r) satisfy the following lower estima-
lions:

(15) lnwj(r) > InlnI(r)+ o(lnr), j=0,1,...,p— 1.
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Since In [éj) is a subharmonic and tends to oo when |z — oo, from

Remark 2 it folows that
Inw;(r) >In []n .[gj)(r) (1 — I_IHW)] + o(lnr)
) n ﬁ r
(16) =Inln 1;’)(1-)-1—0(I)+o(ln 7)
=lInln I,:'i)('r) + o(ln r),
where ¢; = Iéj)(r(,) is a constant.

Now the conclusion follows by induction. When 7 = 0. (15) is evident;
assume it is true for each v < j. I'rom Corollary 1, (16) aud the hypothesis, we

obtain

Inwjti(r) >Inln Iéj)(‘r) + o(Inr)

v=0

>In [111 Is(r) + ZJ: Inw,(r)—jln 'r] + o(lnr)

> In[ln Ly(r) + jluln Is(r) + 0(In r) + o(In r)] + o(In r)

= In [In £5(r) (1 + j 42 4 20erl)] 4 o(in r)
=InlnZs(r)+ o(1) + o(In r).
I'his completes the proof.
Now we can formulate the following main result.:

Theorem. For each entire function [ of order pand cach 6,1 < 6 < oo,
p € Zy lhe following limil cqualitics hold:

m{r (1701710 }
= /5

i) i-i—l-;'r—-(x.- ; P nr p

. = l“{"o" ("':\"‘(")/Mé(”)) }

i) lim,_a TR =p:
. In (m(b’_')(r)/M(f,:(r))

lii) m,-_.m Tor = p.

Proof. From Lemma 2 and Corollary 2 of Lemma 3 we have

(»), .
ln{r" i‘}?(—(v—')—)} <p hnwe(R)+0(1).
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Putting in (6) ro = R,7 = eR in the case P = 0 and using the monotonicity of
wo( R), we obtain
InIs(¢R) > In I5(R) + wo(R).

But since Is(R) increases when R — oo,then In f5( ) is greater than zero and
In fs(el) > wo(R),

50

InIn fs(eR)
In(el?)

Then from Lemma 1 there exists g such that for every r > g,

In(cRR) > lnwy( ).

Inwe(R) < (p+ 5)In R+ 0(1)
S(p+3)r+0(1)+o(1)

and if » > 1,

In {z" (1;”)(1')/.[,5( "‘))}

£ 0(1
Inr <”(”+§)+"h(77)’
that is,
i {re (1P(r)/15(r)) } sttt
oint </)+§+§=P+t‘.

On the other hand, from Corollary 3 of Lemma 3,

().
In (r” —I-;——(—('L)z) >p Inlnlsg(r)+ o(lnr)
s(r

and if » > 1,

In {r" (I‘ﬁ")(r)/l‘s(l’))} % InIn Zs(7)

(17
) p Inr = Inr

+0(1).
From Lemma 1, for every € there exists a sequence r; — oo such that

Inln Z5(r;) €
Inr; e 2

and in (17) we get

ln{r’-’ (I(p)(r-)/l,s(r-))} .

n
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This completes the proof in case (i).
Case (ii) follows from the relations

ms(r) = (Is(r)’,  mPr) = (10()’

and from the Rahman’s results.
Case (iii) follows from the definitions of functions mf,")(r‘) and Mg’,l(r).
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