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Every Riccati Equation Can Be Solved by
Quadratures in a Wider Sense

D. Dimitrovski', L. Stefanovska®, M. Kujumdzicva-Nikolska®

Presented by P. Kenderov

“Solved by quadratures in a wider sence” means that the solution of the analytical
differential equation can be expressed by serics of integrals of the coefficients of the equation.
This is a natural generalization of the classic quadrature theory given by Liouville-Véssiot [1].
Hence, this paper proves that any Riccati equation can be solved by quadratures in a wider
scuse, so that the knowledge on particular solution is not requred at first.

1. Preliminaries

Let »
(1) Y = a(x)y? + b(x)y + ()

which is a general Riccati equation where it is supposed that the following
conditions are satisfied for coefficients a(a),b(x),c(2):

H1 : a(z), b(z), c(x) arc defined on the interval I C R, which is
symmetrical to the coordinate origin;

12: a(x), b(z), c(x) are analytical [unctions on I;

H3: a(z)#0forz e l.

It is known that by the substitution

1

y—'—-——-—‘.’

a(z)”

equation (1) can be transformed into

a
Z==-224(b+—)z-ac
a
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and by the substitution
!
[

w

a linear differential equation of 2nd order is obtained
1
«

u = (b+ —)u' + acu = 0.
«a

By the substitution
u= Ffl_’j‘(b'{'%)'l"'.w

it can be transformed into a canonical equation of 2nd order

(2) ' w” + A(z)w = 0,
where
1 ., 1 a
Y= =(b+ =) = 2(b+ £)? + qe.
(3) A(z) 2(b+ a) 4()+ a.) + ac

2. Result: Quadrature in a wider sense

Based on hypotheses H1, H2 and H3, A(x)is also an analytical function
and it can be expanded in a convergent series

(4) A(z) = i apa®

k=0

where aj arce constants which depend on the terms in the power series of the
functions a(z), b(x), and ¢(z). Applying the Cauchy theoremn a unique solution
in the form of power series is obtained:

(5) w(z) = f: crx®

k=0

where ¢, are constants. Solving (2) by series, after substituting (4) and (5) in

(2), we have
o<

Z k(k = 1)cpzb2 + i apa® Z crz® =0
k=3 k=0

k=0
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and using the method of unknown coeflicients we get

1.2(:2 + UoCo = 0
2.3¢3 + aocy + ayco =0

3deq + aocr + ayey - aye, =0

(k - 1)kck + @oCl—2 + 1€z + - -+ Ap_200 =0

If we suppose that ¢, and ¢; are arbitrary cofficients, we can find that all con-
stants ¢; (¢ > 2) depend on ¢, and ¢; as follows

¢y = —z%l-aoco
e3 = —35(a0c1 + aico)
(6)
c1 = —75(a0cs + arcy + azeo) =

= —g5lto(—3500C0o) + arc1 + azco)

k= —m[aock_g + o+ ag-2¢]

Substituting (6) in (5), the solution (5) is expanded in the series with numberical
coeflicients which depend on known a; and two arbitrary constants ¢, and ¢;.
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By rearranging the terms, we have

) _ 1 ! 1 o "
w(x) = o[l — fgter?® — 5a1a® — FHaat — ﬁa;,;ﬁ -

+ao (72850 + gia® + 2ab 4. ) +
tay (72252% + yipa® +..) +

+az (r;'_%?;a-'“ + if‘il.tLiff"'T .00 +.. .]+

+ao (725525 + g 5pa® +..) +

4o (33%552% + s+ )+ ]

and we can see that the series in brackets behind ¢, and ¢y are in [act double
integrals of the terms of series (4), i.c.,

w(z) = co[l = [Fdz [T aodz — [ da [ ayede — [T da [T age?de — ...
tao (f3 dz [ dz [T dz [ asdz + [ du [ da [J dx [ ayaede + . ..)
tay (7 dz [ zdz [ dz [ aodx + [j dz [J xdx [ da [] aqaede +...) + .. ]
+efx — [T dz [J zaodx — [ du [ ayatde — [T da [T ag2dx ~ ...
+a, (f; dz f: dz [J dz [} aoxdx + [ de [ dz [T dx [T ayade +...)

+ay (f7 dz [J zde ] dz [j aoxde + [ da [J adz [ dz [T ayaide +..) + ..
or using (4) by condenzation,

w(z) = coll = [Fda [ Az)dz + [ de [f A(z)de [ du [T A(x)de
— [Fdz [F A(z)de [F dz [¥ A(z)de [*de [T A(e)dz + .. ]
talz - [§de [0 cA(x)de + [T de [7 A(x)de [7do [0 A(x)da
— [Fdz [F A(x)de [T de [ A(z)de [T de [T 2 A(e)de + .. )

= cowy + w2,
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where

(7) wy(x) = N2o(=DF [F [T A(x)da? . . [T [T A )da®
Y

(8) wy(x) =2+ 25, (=D* [T JS ANa)da? L[S [T x M (x)da?
o

(the k-double integrals are k-fold double integrals).

Theorem 1. Lei:

(?) hypotheses H1, H2 and I3 be valid:

(i) function A(z) be given by (3);
then:

1° functions wy(z) and wa(x) given by (7) and (8) are solutions of equa-
tion (2) for z € I; :

2° functions wy(z) and wa(x) are lincarly independent for x € I

3° the general solution of cquation (2) is

w(x) = cowy(2) + crwa(x),

where ¢, and ¢y are arbitrary conslanis.

Proof.
1° If we differentiate (7) two times, we get

w'i(x) = —A(x) + A(2) [T da [J A(x)da — A(x) [T de [ A(a)dz [ da

(]

IS A(x)da + ...
= —A(z)[1 = [Fdx [T A(x)de + [ dx [ A(x)de [ dz I35 Ma)de - .. ]
= —A(z)wy(2).

The proof that w; is another solution of (2) is the same. ‘
2° If we take wy(0) = 1, w’;1(0) = 1, wy(0) = 0 and w’3(0) = 1,
Then the Wronskian determinant

wy(0) w,’(0)

W(wl(o)’ w‘Z(O)) = ’U)Q(O) 11?2’(0)

= 1#0

and the solutions wy(2) and wz(x) are lincarly independent. u
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Theorem 2. The two independent particular solulions of the Riccati
cquation (1) are
L ouy 1wy

9 h=—-—— d y=———.—,
) n a(x) w i a(xz) uy

where

(10) "= e%f(b-'-%)dx-zz"':o(—l)k JO IS A(z)da? . . L7 [T Ax)da?,
RN SE

(11)
uy = e%f(b"'%)d»’”.(:c + 02 (=DF [2 [2 Ax)da? .

— k

ST T a A )da?),

and A(z) is given by (3).
If we adopt that “solved by quadratures in a wider sense” means series
of integrals of the coefficients of the equation, we have the following theorem.
Theorem 3. Every Riccali equalion (1 ) can be solved by quadratures in
a wider sense for any case of analytical coefficients a(x), b(x), c¢(x); a(z) # 0.
Proof. According to the general theory, if we know two particular solu-
tions of equation (1), then the general solution can be found by one quadrature

o Ce— | @) =i
Yy—Uu

hence,
Y—"" !
. - ( -l

7

Y= wy’

where ¥y, y2 and uy, uy are given by (9),(10) and (11). B




Every Riccati Equation Can Be Solved by ... 227

3. Example

The Riccati equation
(12) Y =-y'—ay-2

by the substitution

u!

y=—
u

is transformed into a linear differential equation of 2nd order
(13) w4 ad 4 2u=0

and by the substitution

.l-'2

u=e Sy e Fow
is transformed into a canonical type
o5 (g & %)w =3
with a particular solution according (8):
wy =a— [T [Ta(3 - E)da? + ¥ IR - G)da? [F [T (B - e — .

3 5 <
g .= PR N SRS 1 29
B ( ) 5.45) + (23.22.5'L o050 T gEpat )

_(ﬁfiﬁz7+...)+,,,

== 5+ 5 (b 5) - 8 (s + ) +-)

= "’[1 o (32)2 + .[(5-22)_“':]2 i3 [(ﬁs):]i +.. ] = :uc"‘fy =0 N

al
So,
s joo LR Gy o
L & < 4 2

Ug =€ twy=e¢e

is a particular solution of the linear equation of 2nd order (13), and
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is a particular solution of the Riccati equation (12).

References

(1] L Kaplanskii, Introduction in Differential Algebra (In Russian).
Moscow, 1. L., 1959. \

2] M. K urensky, Atti Accad.Lincei (6) 9 (1929).

B]L.Tchakaloff, Giornale Mal. 83 (1925), 139.

1 Institute of Mathematics Received: 20.01.1994

Faculty of Science
Skopje, MACEDONIA

% Faculty of Technology and Metallurgy
Skopje, MACEDONIA

3 Faculty of Electrical Engineering
Skopje, MACEDONIA



