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of Hamiltonian Matrices !

Milko G. Petkov and Ivan G. Ivanov

Presented by Bl. Sendov

An effective algorithm for computing eigenvalues of real Hamiltonian matrices is pro-
posed. The algorithm is based on similar orthogonal and simplectic transformations. It can

be used also for solution of matrix algebraic Riccati cquation.

In this paper we consider square 2n X 2n matrices. Let I, be a unit n X n
0 I,
-I, 0
A real matrix H is called Hamiltonian (J-antisymmetric), if JTHJ =
—HT [1,5,6]. The real Hamiltonian matrix // is of the type

madtrix and J be a block matrix J =

A B
where A € R***, B = BT ¢ R*"*"_ D = DT € R*** and R"*" is the set of
real n X n matrices.
Ikramov [1] raises the question for construction an ortogonal and sim-
plectic algorithm reducing the Hamiltonian matrix H to matrix /I of the type

‘I}:H(;"I}vo)‘: ( :)l _?l'T )a

! Partially supported by the Bulgarian Ministry of Education and Science under Grant MM
425/94
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where A is an upper Hessenberg matrix, B = BT. We can use this algorithm
for solving matrix algebraic Riccati equation

(2) L(X)=XBX -XA-ATX-D=0,

where A € R*** B = BT ¢ R**" D = DT € R***, B is a positive definite
matrix and D is a positive semidefinite matrix.

The matrix Riccati equation has many apllications. In control theory,
in research of mechanics systems we are to compute a solution of (2). It is
well known that this equation has a symmetric positive definite solution P [2].
The computation of solution of (2) is equivalent to the solving of the spectral
problem of the real square Hamiltonian matrix # = H(A,—B,-D).

In this paper an algorithm for computing eigenvalues of H is presented.
Let us consider

Hz= Az,

where H is a Hamiltonian 2n X 2n real matrix.

Our algorithm generalizes the algorithms from [3,4,6] and computes
eigenvalues and eigenvectors of the matrix /7.

In the algorithm we construct the sequence

(3) Hipr = UD HWU = (b)), By = B,k =1,2,3,...,
where Uy = Up,q, (k) is a suitable matrix.
Since the computations in each step are similar, we consider the k- th step
of the algorithm. We introduce the notations
Hy. = H(Ak, By, Dy) = (h{})),
k k k
Ay = (al)), B = (b)), Dk = (dg)).
and compute the matrices Hy + II,?' and CY, for which we obtain:
Hy + Hi = H(Ax+ AY, By + Dy, Di + By),
C = C(Hy) = (i) = He I} — HI Hy, = H(Fy, Ey, Ey),

where
Fy = FkT ey AkA{ + By By — AZ.‘AL- — DDy = (f(k)),

Ey, = Ef = AtDy - BuAy — AL By, + Dy AT = ().
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We compute also the numbers

k) _ (k) (k) k) _ (k)

The choice of the matrix Uy depends on the bigger of the numbers h(*)
and ¢(¥). The similar transformation (3) preserves the structure of Hj, i.e.
Hy = H(Ag, By, Dy).

Then there are five possible cases:
Al Let [ =e®W>h® 1<p=pp<qg=q<n, ¢=¢p In
this case the matrix Uy = Upq(¢p) is of the type

(4) Uk = Up(p) = ( ot ) :

where V € R**" and

Upp = Vgq = chy
(5) V = (v8y) = { Vpg = Vgp = shy
vy =0, (B7)¢ {(p:p),(P,9),(a,p),(g:9)}

In the matrix (5) we define ¢ by

o

(6) the & 130

where

G = 23 (@) +(af)? + (al)? + (af)?)
i#pg
¥ Z ((b(l'))z + (b(’»))Q + (b(k))z + (b(“ )
i#pg
e E ((d'(:))2 3 (d(h))l +( l(‘))Z + (d(k))2),
i#p,q
L = 2T3+2§3,+T§+5§+T5+5},,
Ta = o —a®, Tp = 40 4 10, Tp = a) 4 g

UL q9 °

€a = o) — off, €5 = U 44D, £p = d) + 4D
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A.2. Let Ie,(,,ﬁ)l% =M > 1<p=p<qg=q<n o= In
this case we choose the matrix Uy = U,q(¢) of the form

(7) Uk=qu(‘P)=(g ‘Z/)v

where V € R***  Z € R™*" are of the form

V = diag[l,-1, che, I p_q,che, I, ]

(8) 7 = = Zpg = Zgp = shep '
Z = (2py) 28y =0, (B,7) ¢ {(»,9),(q,p)}.

In the matrices (8) we define ¢ by

(k)
2e
thy = —24
(9) W= Gy
where
k k k k : 1%
L= 2y +age) + 200) - di)? + (aff) + aff))?

b+l O - A+ )~ DY
When p = ¢ we choose V and Z in the matrix Upyy(¢) from (7) of the
type

V = diag[l,-1,che, I,
(10) F ok ey = Zpp = shyp

G =1 50 =0, (B.7) # ().

In this case we define the parameter ¢ from (10) by formula
2¢4F)
thy = '
S Y= aranT ey
k) 3 . 3 p 0 «
G=2 37 (W) + (B 4+ (L) + (),
i#p,p+n
k (k k k
D= hg’p) = hp-gnp+n’ §= I'r()p)-l-n e h;-i-)np'

Remark. In the cases A.1 and A.2, when we choose Uy, from (4) or (8)
or (10) and we choose ¢ from (6), or (9), or (11) respectively, we have

A2 = | Hel|? > = .
(12) “HL” ” ’--H“ = JH-HLIP



Numerical Computation of Eigenvalues of Ilamiltonian Matrices 343
A.3. Let Ia,(,ﬁ) 4 a,(,i)l =hk) > k)| < P=pP<qg=qr < n, ¢ =4pp.
In this case we choose the matrix Uy = Upy() of the type

(13) Upg(p) = diag[Tpe(), Tpy(#)],
where Tp,(¢) € R**™ is a matrix of the form

tpp = lgq = cO8 @

Toa(#) = (tpy) = § tpg = —tgp = sin 4
tay = 8py (B,7) & {(2y0) (2, 90),(¢,P), (2, 9)}-

For ¢ in the matrix (13) we have

apq) + aip)

(14) tg2p = —5—7 -
| afy) — afy)

A4 Let |00 + 051 = 1) > e, 1< p=pe<g=qu <n, ¢ = @
In this case we choose the matrix Uy = U,y () of the type
: ¢ -5
where C, § € R"*" are determined by

C = diag[l,y,cos,1,_p,cosp, In_],

Spqg = 8¢p =8iN Y

S = (sﬁ'v):{ 3gy =0, (8,7) & {(p,a),(2,p)}

For ¢ in the matrix (15) we have

(k) (k)
(16) te2p = Bt
App + agq

A5 Let [b) + 05| = A > W 1< p=p=g=q <n ¢ =g
In this case we choose the matrix Uy = Up,(¢p) of the type (1 < p=¢q < n)

(17) _ Upy(p) = ( g' —C—.S ),

where C, S € R"*" are
C

diag(I,—1,c0s @, I,_,],
S

Il

5 8y, = 8iN @
(s8y) = { 8:;: =0, (B,7)¢ {(»,p)}
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For ¢ in the matrix (17) we have
k k
_ W+ )

a:,';,) + a(")

tg2p =

Lemma. Let a and B be integers and 1 < a # B < 2n. Let H =
U-YHU, where U is chosen from (4) or (7) and ¢ is chosen from (6) or (9)
respectively, depending on a and 3. Then

= 3 '
[hij — hij| < \/;lcaﬁI% for all 4,7,

where H = H(A, B, D) = (hij), H = H(A, B, D) = (h;), C(H) = H(F,E,E) =
(eij).

This lemma is proved by analogy with Lemma 1 [4].

Theorem. For the sequence (3) we have
I C(Hr) — 0, k— oo.
II. The symmetric matrix ;(IIL + HT') tends to the diagonal matriz

L(Ho + HY), where Ho = H(Ao, Bo, Do) = (h“”),
"(HO + HOT) b d““/[hll L hg‘r)x)Zu ’

where h( ) are real parts of eigenvalues of II .
III. Let for 1 < p # q < 2n we have h,,,, # h(o) Then

k .
AR — 0, k— oc.
IV. Let for 1 < p # q < 2n we have hi,?,) = h,‘,g) and for each t # p,q and
(1 £t < 2n) we have h(o) # h,(,(,),). Then :
h(k) — h(o)

pgs Kk — 00,

where h( ) is the imaginary part of eigenvalues with a real part h,,,,

The theorem is proved by analogy with Theorem from [4].

Our algorithm for computing of eigenvalues and eigenvectors of real
Hamiltonian matrix can be used successlully for solving the matrix equation
(2). One method [2] for computing solution P of (2) follows. We reduce the
matrix I = H(A,—B,-D) with Q R-transformations in form of Shur
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U )
U2
For the solution P of equation (2) we have P = Uy U 1'11.

This method can be changed as follows. We compute eigenvalues and
eigenvectors of the matrix H = H(A,—-B,—D) with our algorithm. Let U be

Z: g;: ) We compute the

Un

H=UTHU, U=
uo, v=( g

the matrix of eigenvectors of H and U =

solution P.

We make numerical experiments for computing of solution P of algebraic
Riccati equation (2). The first method, who uses @ R-transformations we denote
by W1 and the second method, who uses our algorithm for computing eigenval-
ues of Hamiltonian matix H, we denote by W2. The method W1 is compared
with the method W2 for computing the solution of Riccati equation.

Our algorithm uses less memory. The iterative process (3) computes
maximum element on each step. In the program of our algorithm a cyclic choice
on the pivot indices (p,¢) is used. The computations were made on computer
Pentium. The elements of the blocks of /I are chosen with function for random
numbers. The experiments are accomplished for different n. Ior each trial we
compute the time for obtaining a solution P of (2) and the accuracy of the
solution P — ||L(P)||1. The results from experiments show that the time for
computing P with algorithm W2 is bigger.

There exist examples for which the accuracy for solution P, obtained
from W2 is less than accuracy from W1. Such kind of example for matrix
H = H(A, B, D) is the following;:

o il
T it i#j
_fiii=i p =i
B‘{o i D‘{o S

Table 1 shows the values of ||L(P)||, for different values of n, which are obtained
from algorithms W1 and W2.

W1

w2

W1

W2

10

10

20

20

n
LL(P)I]x

3.6755 .10~*

1.0343 .10~7

4.2971 .10~

1.5521 .107°

Table 1.
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