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Global Existence for Semilinear Massless
Dirac Equation with Small Data '
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Presented by P. Kenderov

We prove existence of global solutions to a semilinear massless Dirac equation. We
construct solutions in the classical Sobolev spaces. Our approach is based on using the con-
servation law of charge together with an weighted estimate for L norm of the spinor field.

1. Introduction

In this work we consider the Cauchy problem:

Dy = F(¢),
(1) P(0,2) = p(x),
where D = iv#9, (with the usual summation convention) is the Dirac operator,

do = 04,05 = Ou;, 1 < j < 3, F () = O(|¢]"), ¢ = (1, .., $4)" is the spinor ficld
and y* are the Dirac matrices. We use the following representation for these

madrices:
» ?
v a 0 § 0 al
7—(0 —-a‘”) "7—(_01' 0o )

1<j<3,
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where o are the Pauli matrices:

OLr 10 1 _ 1
”'(01)’”‘ 0)’
2_[0 —i a_f(1 0
"‘(io e o T

We are interested for which n the initial value problem (1) is well-posed in clas-
sical Sobolev space H?®. The well-posedness means that if 9 € I1* is sulliciently
small then ¥(t,.) € H*.We are also interested in decay properties of the solution
. Our approach is based on using energy method combining with an estimate
for weighted L norm of the solution of (1).

-

We have the following relation:
(2) DoD = (98- 82 - 0%, — O )i
where I, is the unit 4 X 4 matrix.

There are a lot of estimates for the wave equation one may try to use
for the Dirac equation. By means of using a suitable L — L estimate
F.John [4] has obtained that for p > 1 4+ /2 the semilinear wave equation
(0} — 92, — 92, — 92, )u = |u|P~'u has a global solution with small initial data.
Moreover, for p < 1 + v/2 the solution might blow-up in finite time. One is not
able to use F.John’s estimate for the Dirac equation in its pure form because
of impossibility to stop the losses of derivalives. In order to overcome this diffi-
culty it is natural for one to use estimates of energy type. Combining I'.John’s
estimate with the Sobolev embedding and energy estimate one obtains solution
of (1)in H3 for n > 2 + V2. In this work we replace Sobolev inequality (which
always costs losses of derivatives) with a more refined approach based on ideas
similar to these of W.v.Wahl [10]. For n > 3 we obtain a solution in H2. In
the case n = 3 we derive a solution in /*(which is also done in Georgiev and
Kovachev [3], as an improvement of Bachelot’s [1] result).

The plan of work is the following. In Section 2 we prove an L™ — L
weighted estimate for the homogenecous problem. In Section 3 we prove an
estimate for the wave equation which has an interest of its own. In Section 4
we define a Banach subspace of H? where the solutions are expected to belong,.
Decay properties of the solutions could be seen from the definition of this Banach
space. In Section 5 we study low-regularity solutions with Sobolev exponent
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s = 2 and for n > 3. In Section 6 we study well-posedness of (1) in %, If n> 3
is an integer then, (1) is well-posed in I1* for s > 2, providing the initial data
are sufficiently small. To obtain this we also use an estimate from [9]. If n is
not integer then (1) has global solution in H* only when n > s+ 1, and s > 2
is an integer.

2. L*® — L™ weighted estimate for the homogeneous equation

We shall study the homogeneous Cauchy problem:

Dy =0,

Taking into account (2) we see that for every solution of (3) we have:

0 -92, - 02, - )y =
‘P(Os € ) M l/)O(‘t),

3
(4) Pu(0,2) = — Y 10705100 := Py().

=1
We are going to use the following relation:

Lemma 1. (see [8]) If f is a conlinuous function and r := |z|, then:

a5 = 2 9 sy 1
»/Iy—:vl:tf(lyl) v = r;/i ”/\f()\)r)\.

; Peox

We shall also use the following estimate:
Lemma 2. Ifn > 2, then:

/ b—a
(e+ 8)" - (et a)y='(c+b)
where b > a > 0, and ¢ > 0.
Proof. We have that
/ & / ik b—a
a (c+38)" = (c+a)*2 Ja (c+ s)? 4 (e+a)"Ye+b)
This completes the proof of the Lemma 2. &)

Now we are going to prove an L™ — L weighted estimate for the solution

of (3).
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Theorem 1. (see [8]) If ¥(t,x) is a solution of (3), then:

17 752 oo Ry x 12
< const (|(1+ &) o)L~ + |(1 + |2)*V po( )1~ ),
where k > 2 and (1, 2) = 1 + |t £ |z||.
Remark . By V¥4 we shall denote the following vector: (9“9)o<|a|<k-
Proof of Theorem 1. We shall use the following representation for-
mula for the solution of (4):
dta) = [ 15
b &)= — P A
Axt el P1(y)e ¥
1

) g f . s+ [

< Vipp(a + tw),w > dw.
t‘lﬂ't? |y—x|=t wl=1 /‘/0( + ) 2

We shall estimate each term in the right hand-side of (5).
1) Using Lemma 1 and Lemma 2, we get:

1 .
e (1)dS,| < * / Vo (1)|dS,
I41rt ly—sfest Yi(y)dS,| 1. 'II—.L'|=t| Yo(y)|dS,

vk 1 ds,
< e|(1+ 12D*V o) e - = - / L A5y
t Jy—al=e (1 + Jy))*
rH AdA

g 1
= el(1 + [ T ol ,w._./ W SR
11+ [=D)*V o) - ~ fret] (L+ A

' 1 r4+t—|r—1
< el(1+ [2))* V' o(@)lr - - (1+]r— tl)""lz(l +|7- 0
c|(1 4 a)*Vg(2)|
TR B2

since r +1¢ — |r —t| < 2r.
2) As in 1), we get:

Lt
4

<

/ < Vo + tw),w > dw|
|w|=1
£ 1 1 SHis g
A : t2 : ‘/Il/".'l:|=l |V ./’O(y)ldbyl
~ » 1 dS
< e|(1 + 2) V(@)L - — / o b ik R
s B Y lin 3 L ap

[(1 4+ | ] )EV ol )|~
g e
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3) Using Lemma 1 and Lemma 2, we get:

1
| —/Iu—xl—_-t Yo(y)dSy|

dwit?
1 ds
< e|(1 + |z)* oo ‘N'f"/ TF T
I( 2"~ o)l 13 Ny—spue (14 40}y

i 1 rs AdA
= et + lal* o(@ee - - S

If

_ 1 [+ AdA
I(t,"') - -t'T_/I;._tI (I_ + /\)k—l’

then:
Casel. t<r<lorr<t<l1
We have that:

I st T L £
i, r)s = d)\ = 4 < - . :
(s i Jpr—t| S(L+t+ )L+ |t —r|)k-2
Case 2. t>rand t2>1
We have that:
1 t4r d\
I(t,r) < —/ B Tt
LS . T3

R 2r < -
tr (L+t+r)Q+t—r)3 = (L+t+4r)(1+ [t —r])k~2

IA

. 1 c :
since 7 < TFi=r when ¢ 2L

Case 3. r>tand r> 1
Case 3 is similar to Case 2. This completes the proof of Theorem 1.
One can obtain the following corollary:

Corollary 1. For every s.> 0 the following estimate holds:

|74 22V 3| ooy x )
< const (J(1+ |2])FVeH go(@)|n= + |(L + |2])*~ V2 spo(2)| 1z ),

where k > 2.

11

363
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3. An estimate for the inhomogeneous wave equation

Let us consider the Cauchy problem:
(0 — 92, — 92, — D7) = F(t,),
(6) ¥(0,2) = ¢(0,2) = 0.

We assume that the function I'(¢,2) has the form L'(I,x) = Fy(t,2) - [5(1, ).
The following estimate holds:

Theorem 2. If ¥(t,z) is solution of (6), then the following estimate
holds:

(14 £+ Je)(L+ |t = [2])' " "o (e, )]

1 ;
< const sup ( | Fy(s, 9)|PdSy)7 - |TirfF2|Lm(R+xna),
0<s<t Jy—z|=t-s
where:
o
1<q<2,2 4+
P g

E G
q

=1,

Proof. Using the representation formula for ¥ (¢, ), we get:

iy Beiig |
P(t,2) = E./o i, 3(~/|-y—:n[=t—s F(s,y)dSy)ds

Using Hélder inequality one obtains:
lo(t, @)
g8 ;
< (s, y)|PdS,)r
< const (/0 t—-s(/h,-aq:c_, [Fi(s,y)|PdS,)»

(lSy l l ,I. wy
('/|v—:v|=t—a (T4 s+ |yD)'a(1 +|s = |yl)* VedS)|TL T2 ooy x 12

By using Lemma 1 one obtains:
|'¢'(i,:c)| < const - 1"131(1,1-_)

Ry
(7) X sup ( |y (8, 9)[PdS,) ¥ | 7o T2 Byl oo (ry x o)
0<s<t Jy—z|=t-s
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where due to Lemma 1:

I(t r)—/t ___1__‘__(/r+t— AdA )%
’ - 0 (t_s)l—"!" I""t+3|(] +3+A)I'I(1+IS—A|)""]’ .
By changing variables g = A% and using Lemma 2 one obtains:

t 1 (r+t—s)?
I(t,'r)Sc/ ————l-——(/( SET.. S

0 (t—s)l_% ':'-A--t-i-‘s)2 (1+82+“)!§q
t 2 5 Y PR N \2
SC/ 1 ; (r+t—s) (r—1t+s) ):ll.ds
0

(t- s)l"]i Q+s2+(r—t+ 3)2)!5‘"1(1 +82 4+ (r+t—s)?)

rl/a /t (¢ < s)%'l
(L4 v+ )%/

Izds
O (14+s+|r—t+s|) ¢

<e re /t Ca re J(t,7)
SCTFIF o (Lratfrotha)ov | - LREHE LES
where
t ds
J(t,1')=/ -2
O (L4s+|r—t+s|) ¢«

Now we shall estimate J(t,7).

Case 1. r > 1
By using Lemma 2 one obtains:

t
J(t,r):/ ds L
O (14r—t+2s)
< t 1

< o .
(Ltr+t)1+r—0770 " (L4r20)'70

Case 2. r <

We shall divide the integral into two parts. When s € [0,¢ - r] the mtegral can
be majorised by:

Sy ds t—7r 1
/ s i -2 & =%
0 (AFt=<r) e (I4+1-n) (Pt L)
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Wlen s € [t — r,t], we have that

/’ ds
t=r (17—t +26)' 4
< J < 1
- (T+t+r)(1+t- r)"l’% i (L4t— .,.)'-1-5 ’

Therefore, Case 2 is completed.

We derive the following:

J(t,r) < £ g
(L+[r—t)™ e
Moreover,
1
Wl
I(t,r) < TS
(Lt elfldli=rfp "0
Using the above estimate in (7) one completes the prove of Theorem 2. [

4. Basic estimate

We introduce the following Banach spaces:

Vi={veC(Ry x R%):

sup  |(1+ ¢+ Je)(1+ |t = =] 72P(2, 2)| < oo},
teR4 ,r€R?

Va = {¢: sup |V'Vig(t,.)]12 < 00)
telly
"y and V3 are Banach spaces with the following norms:

|9l = sup (1424 [e])(1+ [t = ||])""29(t, 2)],
tER4 ,xER®
[¥lv, = sup [V'Vi(t, )|
teRy :

Let us denote V = Vi V4. V is a Banach space with the following norm:

[%lv = |¥lv, + |¥]v,

V is such a space where the solutions are expected to belong.
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Taking into account (2) one can sce that the integral equation corre-
sponding to (1) is:

® e =t [ DF@Ss,

4 1—s

Here ¢(t, ) is the solution of the homogeneous problem with initial data y(z).

Let us define L as:

T ARt |
LF($) = fo ( /h,_x.::_, DF‘d*)rl.S’,,)rls

l—s
The following a priori estimate holds:
Theorem 3. Ify €V, then LF(y) €V and
|LF(%)|v < const ||}
where n > 3.

To prove Theorem 3 we need the next technical estimate which enables
one to evaluate surface integrals over the light cone with usual L2-norms.

Lemma 8. Ify : R® — C1 is such that |V'¢| € L2(R3), then the
following inequality holds

[ P, < const [ 19 9(w)Pdy.
ly—z|=t R?

Proof. First, if |V!f| € L'(R?), then via Gauss formula one has:

| sy f(y)dS,|
IZ / i((x; = y;) f(y))dS,|
1—1 le—yl<t
<e IV* f(w)ldy + L€)W,
ly—=|<t ly—zl<t |y — 2| :cl

I'urther, via Cauchy inequality one has:
[ 1wwias,
Iu—*l—
[ (y)|*dy)

<el IV (y) 2l dy + /

ly—=|<t

<e ([, IV sldy + ([ Wl ([ o

-y
[ (y)Pdy)'7?).

yl"
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Now we are in position to apply Hardy inequality:
1 )2 / 1 2
—| f(2)|*dx < V' f(2)|*dz,
/H" |1'|2|f( ) i3 n3| J@)

which completes the proof of Lemma 3. ]
Proof of Theorem 3. Using Lemma 3 and Theorem 2 for

p=q=2l=n—-1,k=(n—1)(n-3),F = |V, F=|p""",
one obtains:

[(L+ ¢+ J2)(1+ |t — |2|)* > LE()]
< const T4 3|72l . su v1y|2dS,)?
< + T2 Pl Loy xR3) ogsgt( ly—:vl:t—al ¥|*dSy)

< const [Py - [¢lv,e
Hence we obtain that

ILE (), S const ||}.

It remains to estimate |LF()|v,. Using the energy estimate for the wave equa-
tion and the Sobolev embedding one can obtain:

IVIVLLE(i(t, )2

<e [ [DPW(r, Dadr

<e [AVEP @, Dtr, Ao + VAP Dz
<e [T Mealbilr, dualflis 21+ 7742
HIVate(r, alply; (1 + 7)™ ydr

+e [ T2 sl (1 4+ 1)

HVLp(r, Nial el + m)~+2dr

i
<o [(@+n) 2RI + (1 4+ 1) lvalliT ) < const (1.
Hence:

|LE(4)|v, < const |]].
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This completes the proof of Theorem 3. -

Remark . In asimilar way one can obtain that for s > 0 we have:

[VELF(3)|v, < const |V*o|%.

5. Low-regularity solutions

In this section we obtain low-regularity solutions of (1) in /2 providing
the initial data sufficiently small. Our main tool is the basic estimate of the
previous section.

Theorem 4. Suppose that the inilial data n € H? of (1) satisfy the
Jollowing asymptotic decay property

I(L+ [2))" ' Vip(@)lee + (1 + )" 2n(e)| Lo + |ln2 < €
where n > 3 and € > 0 is sufficiently small. Then there exists a global solution

1
¥ € [ C([0,00); H?7F).

i=0

Proof. We consider the usual iteration:

(9) "/)m+l =¢+ LI"(“/”m )s

where ¢ is the solution of the homogeneous equation with initial data 7, and
o = ¢. Using Theorem 1, the basic estimate and the energy estimate one
obtains:

maly < Clet [gmld)
IFurther we set:
Ys=(¢: |l,/7|‘/ < 9).

It is easy to see that ¥m41 € Y5, when v, € Ys,providing ¢ and 8 such that
C(e+ 6™) < é. Similarly to the proof of the basic estimate, one obtains:

|'¢’m+1 by ¢1n|V < c(l"/’m "l/—l + |¢/’11A—1 ?/—I)W’m o "/’m—llV-

Therefore the iteration (9) is contraction in Yy for small §. By the usunal argu-
ment we obtain that v, converges in Y to ¢ which is the desired low-regularity
solution. This completes the proof of Theorem 4. [
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6. Higher regularity solutions

In this section we try to construct solutions of (1) in If*, for s > 2. By
the Sobolev embedding we see that for large s solutions are also classical (i.e.
belonging to C'). First let us cousider the case when n is an integer. The
following theorem holds:

Theorem 5.  Suppose the inilial dala n € H® s > 2, is sufficiently
small. Then the initial value problem (1) has a global solution

Y€ ﬁ C([0, 00); H*™7),

7=0
for n = 4,5,6...
To prove Theorem 5 we need the following lemmas:
Lemma 4. (see[6]) If 11,92 € H*(I3;C*), then the following estimate
holds
|V 3P1epa| < const (|V*Py|ne [2lrm + [1]1e2 | V42| Le ),

1 T B N ¢
wher\<:’71-+q—,_,%2—+‘lm = 3.
The following obvious corollary holds.

Corollary 2. Ify € H*, then

where F(y) = O(|¢|").

There are two different approaches for proving Lemma 4. One of them
is based on using Fourier analysis (see [2], [6]). The other one is based on using
Gagliardo-Nirenberg inequality.

We shall also use the following estimadte:

Lemma 5. (Conservation law ol charge for the Dirac equation) If
Y(t,z) is a solution of

(10) Dy = F(t, &),

then the following estimate holds:

t
(8, za < const (190, i+ [ 1F (s, Myads).
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The proof of Lemma 5 is based on multiplying the equation (10) with
—iy%¢ and integration over R3.

Commutating the Dirac equation (10) with d;, 0 < j < 3, we can obtain
similar estimates for |[V*¥(t,.)|(k > 0).

Proof of Theorem 5. Now using the corollary of Lemma 4, the con-
servation law of charge for the Dirac equation and Sobolev embedding one ob-
tains for the solution of (1) and any I > 0:

|VAVE ()| e < ¢ (e + /0 : |V F (7, )T, )| g2dT)
+/0t V2 R(4p(T, )| g2dT) < € (€

+ [ tr, sl T, sl 2
HIVE (7, M2l o(m, DE! + [VE2(7, )| el 9o(r, )=t dr)
< (et [ VIR Nl VE2(r, Dlualir, =2
HIVE (7, el DER + V()] alb(r, )IE="dr)
Sel(e+ /0 '(IVL"/JPV,MI’&:?(I + 7)Y 4 [Viplvalyly (1 4 )7 ).
Hence, if we set
%l = 1V54lv, + I T3] oo,
then we can obtain
el < e(e + l1@llF)-

And by usual argument one obtains solution v € ﬂ}-=o ([0, 00); H*( R?))
(s > 2), providing ¢ is sufficiently small (i.c. the initial data). This completes
the proof of Theorem 5. w

Remark . If we consider the case n = 3, then we also can obtain
global solution in H?, but for s > 3 (which is also done in [3]). Tollowing the
same way like in the proof of Theorem 5, we can achieve the desired result by
setting:

Nl = Vel + e 23V | o0,
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but in this case [ > 1.

Similarly to the proof of Theorem 5, one obtains:

VIVt )l < e (e + / ey Moo | VE (7, )2l D
HVF o, alb(r, DIER + V24 (r, el (r, )" dr)
Se(et / (L+ 7)™ ([¢udva| V2 -/’|»,|«/»|"-2+ IVl |y dr).

Taking into account the remark after Theorem 3, we can go on like in the proof
of Theorem 5, but in this case for the convergence of integrals it is necessary
that n > 2 (i.e. we include the case n = 3).

Hence we have the following

Theorem 6. Ifn € H*(s > 3) is sufficiently small, then we have global
solution of (1) ¥ € =0 C*([0, oo); *=i(R%)), for n = 3,4,5, ...

Remark . This result seems to be sharp for the integer case for n,
since if n = 2, then one may expect the solution of (1) to blow-up in [linite time

(see [5]).

Now we may turn to noninteger case for n. This case is more complicated
because we are not able to use Lemma 4. llowever, the following generalised
form of Theorem 3 holds:

Theorem 7. Ifn > s+ 1, s > 2 and s is an inleger, then for every
n € H?® which is sufficiently small the initial value problem (1) has global solution

¥ € Nj=0 C¥([0, 00); H*~I(R?)).
Proof. By the conservation law of charge for the Dirac equation we
obtain for n > 1 4 3: |

|V1V5:H‘/)(t,-)|[,2 <e(e+
t v e
(11) /0 | V5 E (T, )Ty )| 2dT) + /(; |72 B (p(r, Plpadr).

Now by using Holder inequality one obtains:

IVERF(p(r, D12 € e(IVE29(r, g2l (r, )=

HVE G, ) VAT, Dl el (. )|“-2

(12) + 3 IVE 0, Maal V52 9(r, s V0, oo i, 2
M
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where the sum is taken over M:
M = (= (ar,.,ap) o <T+2,12 a1 2 ... 2 ag).

Further via the Sobolev embedding the left hand-side of (12) can be estimated
from:

IV F((r, DIz < e (V297 )l pel(r, )7
HIVE2 (7, Ll VEe(r, Dl ral(rs TS

+ 3V (r, Nzl VI 2(r, M\ VEH 2, Dl paleb(r,
M

(13) e (L4 2alp
In a similar way one can obtain:

(14) |VEH F ((r, ), )
Hence if we use (13) and (14) in (11), then we obtain:

IVetlive < e+ [1¢117)-

PP € I ) it (171

Moreover one has:

191l < el + [1I17)-

Now it remains to use the usual argument to complete the proofl of Theorem 7.
]
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