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1. Introduction

In [3],[4] it has been shown that for a sell-mapping 7" on a normed space
or a Banach space X satisfying various contractive conditions, il the sequence
of Ishikawa iterates associated with 7' converges, it converges to a fixed point of
T. These results have been recently extended by L.A. Khan in [2] to the case of
metric linear spaces.

In this paper, we consider two sell-mappings S and 7" on a metric linear
space X and show that if the sequence of Ishikawa iterates associated with §
and T converges, it converges to a common fixed point of § and 7.

In the sequel we assume that the topology on X is generated by an F-
norm ¢ which has the following propertics (see [5], pp. 28-29).

(a) g(z) >0and g(z)=0if 2 =0
(b) ¢(z +y) < q(2) + ()
(c¢) g(az) < g(z) for all (real or complex) scalars a with |a| < 1

(d) If a, — a and z, — z, then g(a,z, — az) — 0.
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Note that q is continuous on X, the equation d(z,y) = ¢(x — y) defines
a translation-invariant metric on X, and ¢(«az) < q(bx) for all scalars a,b with
la] < [bl.

Let C be a nonempty convex subset of X and 5,7 self-maps on C. An
Ishikawa scheme [1], for S, T is defined by

zg € C -
( 1) Yn = (J - ﬁn)-’l’n + AuSay, n2>0
Tn4lr = (1 —ay)t, + o, Ty,, n2>0,

where the real sequences {ay,}, {3,} satisly
(i)0<a, <1, 0<B,<1,forn>0

(ii) limy,no @ =a >0

From (1) and condition (i) we obtain some inequalities which will be used

later
‘I(yu - xn) = ’I(ﬂn(swn - Zy))

(2) < ‘I(an = Ty.) + q(Tyn — ,),

(I(yn - Tyn) = q(ﬂn(smn = Tyn))+ (1= ﬂu)(a"n - Ty.)
(3) < ‘I(Swn - Tyn) + q(xu - Tyn),
(4) @(zn = Szn) < q(@n —Tyu) + q(Ty, — S2,)

q(yn - Szn) = ‘1(1 = Bu)(xn — Sy)
(5) .<_ q(wn . T!/n) + (/(T'!/n o S‘”n)

2. Main result
We present our result in the form of the [ollowing theorem:

Theorem 2.1 Let C be a closed convex subsel of X and lct S,T be two
self-mappings of C satisfying at least one of lhe following conditions

() q(Sz-Ty) < kmax{qg(z—y),q(x—=Se),q(y—=Ty), q(x =Ty)+q(y— Sz)}

(1)  q(Sz=Ty)+q(z—Sz)+q(y—Ty) < c[g(z=Ty)+q(y—Sx),0< c < 2
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(I11)  q(Sz—Ty) < kmax{g(x—y).q(z—Sx),q(y—Ty), alx=Ty), aly—Sx)}.

Jorallz,y € C, where 0 < k<1 and 0 < ¢ < 2. Suppose thal for some xg € C,
the sequence {z,}3% of Ishikawa iterates converges to a poinl u. Then u is a
common fized point of S and T'. Moreover if (III) holds, then the common fized
point u is unique.

Proof. Suppose first that Su = « for a point u in C. Then putting
@ = y = u into any of the inequalities (T)-(TIT) we casily see that Tu = u.
Similarly 7'« = u implies Su = u. Now let {2,} be a sequence of Ishikawa
iterates with S and T such that

lim x, = u.
n—oo
From (1), we see that
1
Tyn — 2 = —ap(Thay1 — Tn).
iy
Since

lim a, = a >0,
oo

n—
there exists an integer N > 1 such that
(4%

—< a«
2_ n

for all n > N. Hence for n > N
«
‘I(Tyn == xn) = q(;(-""n+l - Zy)).

Since

lim 2, = u,
N=—>00

we have
¢q(Tyn —2,) —0 as n— o

and hence
Ty, —u) — 0 as n — oo.

Now forn > N,
(6) (u—Tu) < q(u—Ty,) + q(Sv, — Tyn) + q(Sx,, — Tu).
Now we need to show that

q(Sxy, —Ty,) = 0 and ¢(Sa, —Tu)—o0 as n— oo.
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If 2, y, satisfy (I), then

‘I(Szn —Ty,) < kmax {‘I(S""n = Tyn) + gz — T'yn),
q(xp — Tyn) + q(Sxn — Ty,),
q(S:z:,, - ’I‘.'/u) + 'l(m'n - T;'In),
2q(Sxn — Tyn) + gz — T'!/n)} =
= k [2(1( Tn — T.'/n) + (l( Sa’n - 7‘:'/11)] .

If 2,,, y, satisfy (II), then
(3=2¢)q(Szn — Tyn) < 2(c — g(xn — Tyn)-
If @,,y, satisfy (III), then

q(sxﬂ - Tyn) < kmax {’l(xn = Tyn) + q(Sxp — Tyn),
q(x, = Ty,) + q(Sxn — Ty ),
Sz, —Ty.) + q(xn — Tyn),
oSz — Tyu) + q(xn — Tyn).
@(Stn —Tyn) + ¢(xn — Tyu)} =
= kq(xn — Tyu) + a(Sxn — Tya)].

Hence in any case,

2k 2(1—r¢)
1-k" 3-¢ "1

Letting n — oo, we obtain ¢(Sz, — Ty,) — o. Then further ¢(x, — Sx,) and
¢(u — Sz,) tend to zero as n — oo. Next il x,,u satisfy (I), then

@(Szy — Tu) < k[g(zn — u) + g(zn — Szu) + q(Sz — Tu) + q(u — S2,)].

q(Szn, — Tyn) < max{ f k} q(xn = Ty,).

If x,,u satisfy (II), then
(2-¢)g(Szp — Tu) < (c = 1) [q(xn — Szn) + g(u — S2,)].
If z,,,u satisfy (III), then obviously satisfy (T) as well. Hence, we have

ko (1-
1-k" 2-
Letting n — oo, we have ¢(Sz, — Tu) — 0. Thus it follows from (6) that
Tu = u. In view our remark at the beginning of the prool u is a fixed point of

S as well. In order to show the uniqueness of « in the case (II), let »(v # u)
be another common fixed point of S and T, then using (III) we have

¢(u — v) = ¢(Su— Tv) < max{g(u—v),0,0,q(e—v)},

q(Szp —Tu) < ma.x{ } [g(2n = u) + q(2, — Sz.) + q(u = S2,)].
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whence u = v.
Finally we give some examples of a metric linear spacc and two mappings
which satisfy the contractive conditions of T’ »>rem 2.1.

Example 2.1. Let X = R, the set of real numbers and ¢ be the
F-norm defined by
||

q(z) = T+2]
Let C =[0,1] and S,T : C — C be defined by

0, 0<z<1 0, 0<z<1
Sz = 1 , Tx = 1 .

Z’ z=1. 5, x=1.

Then S, T satisfy condition (III) of Theorem 2.1 with k = % as follows
(i) fz =y =1, then

1
¢(Sx—-Ty) = 5
2 2 3. 2 1
§¢I(y—5-”) = ;l(—‘)—7>g,
2 2 1
§q(w—Ty) = q( ) R

(ii) f 0 < =,y < 1, then (II) is trivially satisfied.
(iii)fa=1,and 0 < y < 1, then

1 1
q«(Sz-Ty) = ‘1(1)=3

2 2 1 1

5‘1(3’ -Ty) = gfl(l) =3 > 5
2 2 3 2 1
50(1-59?) = ':;‘1(2)—- =>z

(iv) f0 <z <1,y = 1, then (III) (similarly as in (iii)).
Note that 0 is the unique common fixed point of S and 7.

Example 2.2. Let X,q,C bo as in example 2.1 and let $,7:C - C
be defined by

1
Sz = 1-2, 0sz<1 JTr=¢ 2 0
0, z=1. 0, 2

A

r <1
1.
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Then S, T satisfy condition (II) of Theorem 2.2 with ¢ = 3 as follows: If 2 = 1
and 0 <y < 1, then

L q(Sz —Ty) +q(z — Sz)+ q(y — Ty)

1 r _ 1
q(§)+f1(1)+fl(3/— 3)= (1) +q(y) = 3 Haly)

I

, 1 1 .
R = q(z—Ty)+q(y—Sx)=r1(§)+q(y)=§=r/(.u).

So that .
3 +a(y) < 3
T+q(y) ~ 2

In this case z = % is a common fixed point of S and T.

L
=
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