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A threc-dimensional non-homogeneous system of quasi-linear PDEs on R is consid-
ered. By mcans of a geometrical approach we study the existence and unigueness of solution
constructed by Riemann invariants.
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1. Introduction. Notation

In this paper we study three-dimensional systems of quasi-linear PDEs
in two independent variables ¢ (time) and 2 (space) of the form

0‘“1 + a.puz = 0
(1) u? — a?d,u' + 20,0 +h =0
pul-g=0,

where 9, = 9/0s, and a = a(u?/u'), g = g(u'), h = h(u) are sufliciently
smooth functions of their arguments; u = (u!, u?, u3).

Such systems are physical models of non-linear electric field’s oscillations
in continuous media and were investigated by U. I>. Emec, L. I. Reppa in [4], who
reduce (1) by a suitable transformation into a sccond order ODE; they analyse
only the behaviour of the solution in a neighbourhood of singular points, with
very special assumptions about the functions a,g,h. For certain conservation
law systems A. M. Grundland, R. Zelazzny (refer to [2] and [3]) proposed an
algebraic approach for finding of solutions constructed by means of Riemann
invariants (for non-homogeneous systems they are called simple states; see A.
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Jeffrey [1]), but it is unfit for (1). In the present work we study a more general
system, applying a purely geometric method (see J. Tabov [6-9]). For that
purpose for the functions «, g, i we suppose:

H1. a, g € C™(R!) (m > 2), h € C*(R?®) (n > 2);

H2. For | s |> 0, and p, q, r € R are fullilled | g(s) |> 0, | h(s,p,q)|>
0, |pstg(s)+r|>0. A

The main result of our paper consists in the statement that there exists
a pair of vector-fields :

m =_(-!I,.‘I,0,0,0,0) y 2 = (1,0,!11\',!11\'1/—1,—1\',!/),
such that the system

e =-yd,®+9o® =0
(2)
e =09+ 9gKo®+ gKy0,® — Kd,2® + g0, =0,

is involutive; here @(2, 2, y,u', u?, u®) is unknown function, K = ghy(ga + y)~2.
The involutivity implies that the commutator [#,,7;] belongs to the lincar hull
of 1,12 (it is easy verifiable); besides, the system (2) has four functionally inde-
pendent solutions ®; (i = 1,2,3,4) forming the system ®;(¢,x,y,u',u?, u%) =
¢; (i =1,2,3,4) (the constants ¢; (i = 1,2,3,4) depend on the initial condi-
tions), hence by classical i}nl)licit function theorem we obtain the implicit func-
tions y = y(t,z), w = w(t,x) (§=1,2,3); thus u(t,z) = (ul(t, x), u3(t, ),
u3(t,z)) is a Riemann wave type solution for (1) with suitable initial data.

2. Tree-dimensional distribution in R®

Lemma 1 (A. M. Grundland [2], our interpretation). The system (1)
possesses Riemann wave type solution if and only if al least lwo among following
three equalilies hold, '

(3) (Vul, JVu?) =0, (Vul, JVe®) =0, (Ve?, JVd) =0,

where (.,.) denoles scalar product, and the matriz J is defined as

-(23)
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Thus u is a solution of (1), constructed by means of Riemann invariants,
if and only if it satisfies the system

Ou! = -9, u?

u? = a?9,u' - 2a0,u® — h
(4) 0w =g,

(Vul, JVu?) =0

(Va2, JVud) = 0.

Letting y = Ju®, K = du', L = Ju? and replacing them in (4) we
obtain the following algebraic system in two unknowns K, L,

K?+ gy 'K(a%9y™'K +2aK - h) =0
(5)
yK + gL =0,

which posscsses two real solutions: (i) Ky = L; = 0 (ii) K2 = ghy(ga +
¥ Ly =-hy*(ga+y)~2. ‘

For K = L = 0 and g # 0 the system (1) has no solution, and a trivial
solution exists provided g = h = 0.

In the non-trivial case K’ = K3(y,u), L = La(y,u) determined by (ii),
we apply the idea proposed by J. Tabov in [7] (see [8], [9] as well) .

3. Involutive subdistributions

The Plaff’ system corresponding to (4) is
wl(dz) = ydu' — Kdu® =0
(6) wi(dz) = gdu? + Kdu® =0
w3(dz) = du® - ydt — gdz = 0,

where z = (z,8,y,u!,u?,4*) € R®; the differential forms wi(dz) (j = 1,2,3)
define a three-dimensional codistribution @. The vector-fields

fl = (09 0, 1,0, 070)9 €2 = (0' 1, 07 l‘.o Lv ﬂ)

(7) 1 » »
&= (lrovovyy- I\o_l\’g))
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annuling the forms w’(&) = 0 (j,k = 1,2,3) determine a three-dimensional
distribution #(z) which is their linear hull. Our next purpose is Lo investigate
whether 8(z) has two-dimensional involutive subdistributions.

Lemma 2 (Compare with Th. 3 in J. Tabov [7]) For k = 1,2,3 there
ezists ezactly one (up to a scalar multiplier) vector field n = 1, satisfying the

system .

(8) W) =0, WHEn)=0 (i=1,2,3 j=1,2,3)

If the system (6) has a two-dimensional resolving distribution 8,(z), then n €
61(z).

The vector-fields 11, 12,1m3 € 6(2) satisfying the systems (8), respectively
are linearly dependent, and if g # 0 their rank equals 2.

Proof. Omitting the technical details, we write directly the possible
solutions of that systems, respectively

m=-gy a+&
M= 982+ yis
s = K1 + s,
or written in six-dimensional coordinate basis (9., 9,8y, 8,1,8,2,0,3),
m = (K - yo, K, —gy~ (K - y9,K), 0, 0, 0, 0)
(9) m = (y9,K, —99,K, 0, 0, 0, 0)
m=(1,0, K, gy'K, -K, g).

Obviously, the vector-fields 7; and 7); are colinear.
Thus we obtain two linearly independent vector-fields (up to a multiplier)

as follws:

(10) m = (-9,9,0,0,0,0), 72 = (1,0,9K,9Ky™,-K,g).

Theorem 1. If the system (6) possesses two-dimensional involutive
subdistribution 8,(z) of 6(z), then the vector-fields n; (j = 1,2) belong to 6,(z).

P r o o f: reduces to check that n; (j = 1,2) satisfly the systems (8),
respectively.

Theorem 2. The subdistribution 61(z) of 8(z) defined as the linear hull
of n; (7 = 1,2) is involutive.
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Proof. The commutator of 9; (j = 1,2) equals
[m,m] = (9 9)Ky~" 1.

Hence [y, 12) € 61(z), which proves Theorem 2.

Theorem 8.  Let for the system (1) H1 and H2 hold. Since the
syslem (2) is involutive and the conditions for the ezistence of implicil func-
tion are fulfilled, it follows that the system (2) has three funclionally inde-
pendent solutwns ®;(t, 2, y, ut, u?, ud) (z = 1,2,3,4), which form the system
(¢, z,y,ut,u?,ud) = ‘I'(to,zo,yo,uo, uo, w) (i = 1,2,3,4), specifying the
implicit fuuctaons y = y(t z), W = v(tz) (j = 1,2,3); thus u(t,z) =
(ul(t, ), u¥(t, z), u(t, :c)) is an unique Riemann wave type solution for (1) with
initial dala wi(tg,z0) = w) (j = 1,2,3), yo = du’(to, o).

Proof. From Th. 1 and Th. 2 it follows that the system (4) has.
four functionally independent solutions ®;(¢,z,y,u!,u?,u®) (i = 1,2,3,4). By
the classical Pfaff theory, the implicit functions y, u‘,u’-,u:’ determined by the
equations ®;(t,z,y, ul,u?, u) = ®;(to, 2o, Yo, u), ud, ud) (i = 1,2,3,4) give all
the solutions of (4), and Theorem 3 is proved.

Since (2) is equivalent to the system

dz/dt = —yg™!
dy/dt = —yK
dul/dt = —
du?/dt = yKg~!

dua/dt = -y,

which possesses integrals

= ug — yo / exp(s — ug)g ™" (s)ds,

ug

y=uvoexp(u' —uy), u?=

and since K already depends solely on u!, u?,i.e. K = K(u!,u%), we can reduce
the problem of solving (11) to the equation

dul /du® = K(u',u®)y5" exp(up — u').

The applied method for solving of the considered problem is applicable
for more general systems of quasi-linecar PDEs, with coefficients dependig on



320 D. Kolev

both dependent and independent variables, and the Grundland’s condition (3)
can be replaced with another one, like this F'(x,1,u,uz, u;) = 0. Then it makes
possible to be obtained solutions not only of Riemann wave type, but with
complete different properties.
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